Generalized Majorization-Minimization

被引:0
|
作者
Naderi, Sobhan [1 ]
He, Kun [2 ]
Aghajani, Reza [3 ]
Sclaroff, Stan [4 ]
Felzenszwalb, Pedro [5 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Facebook Real Labs, Mountain View, CA USA
[3] Univ Calif San Diego, La Jolla, CA 92093 USA
[4] Boston Univ, Boston, MA 02215 USA
[5] Brown Univ, Providence, RI 02912 USA
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97 | 2019年 / 97卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-convex optimization is ubiquitous in machine learning. Maj orization-Minimization (MM) is a powerful iterative procedure for optimizing non-convex functions that works by optimizing a sequence of bounds on the function. In MM, the bound at each iteration is required to touch the objective function at the optimizer of the previous bound. We show that this touching constraint is unnecessary and overly restrictive. We generalize MM by relaxing this constraint, and propose a new optimization framework, named Generalized Majorization-Minimization (G-MM), that is more flexible. For instance, G-MM can incorporate application-specific biases into the optimization procedure without changing the objective function. We derive G-MM algorithms for several latent variable models and show empirically that they consistently outperform their MM counterparts in optimizing non-convex objectives. In particular, G-MM algorithms appear to be less sensitive to initialization.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Generalized Majorization-Minimization for Non-Convex Optimization
    Zhang, Hu
    Zhou, Pan
    Yang, Yi
    Feng, Jiashi
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4257 - 4263
  • [2] A majorization-minimization approach to the sparse generalized eigenvalue problem
    Bharath K. Sriperumbudur
    David A. Torres
    Gert R. G. Lanckriet
    Machine Learning, 2011, 85 : 3 - 39
  • [3] A majorization-minimization approach to the sparse generalized eigenvalue problem
    Sriperumbudur, Bharath K.
    Torres, David A.
    Lanckriet, Gert R. G.
    MACHINE LEARNING, 2011, 85 (1-2) : 3 - 39
  • [4] Majorization-Minimization for Manifold Embedding
    Yang, Zhirong
    Peltonen, Jaakko
    Kaski, Samuel
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 1088 - 1097
  • [5] A Look at the Generalized Heron Problem through the Lens of Majorization-Minimization
    Chi, Eric C.
    Lange, Kenneth
    AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (02): : 95 - 108
  • [6] The appeals of quadratic majorization-minimization
    Robini, Marc C.
    Wang, Lihui
    Zhu, Yuemin
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 89 (03) : 509 - 558
  • [7] Composite Optimization by Nonconvex Majorization-Minimization
    Geiping, Jonas
    Moeller, Michael
    SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (04): : 2494 - 2528
  • [8] A Majorization-Minimization Algorithm for Neuroimage Registration
    Zhou, Gaiting
    Tward, Daniel
    Lange, Kenneth
    SIAM JOURNAL ON IMAGING SCIENCES, 2024, 17 (01): : 273 - 300
  • [9] Majorization-minimization generalized Krylov subspace methods for - optimization applied to image restoration
    Huang, G.
    Lanza, A.
    Morigi, S.
    Reichel, L.
    Sgallari, F.
    BIT NUMERICAL MATHEMATICS, 2017, 57 (02) : 351 - 378
  • [10] SABRINA: A Stochastic Subspace Majorization-Minimization Algorithm
    Chouzenoux, Emilie
    Fest, Jean-Baptiste
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 195 (03) : 919 - 952