EXISTENCE FOR NONLINEAR FINITE DIMENSIONAL STOCHASTIC DIFFERENTIAL EQUATIONS OF SUBGRADIENT TYPE

被引:1
作者
Barbu, Viorel [1 ]
机构
[1] Romanian Acad Iasi, Octav Mayer Inst Math, Iasi, Romania
关键词
Stochastic; convex function; optimal control problem;
D O I
10.3934/mcrf.2018020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One proves via variational techniques the existence and uniqueness of a strong solution to the stochastic differential equation dX + partial derivative phi(t, X)dt (sic) Sigma(N)(i=1) sigma(i)(X)d beta(i), X(0) = x, where partial derivative phi : R-d -> 2(Rd) is the subdifferential of a convex function phi : R-d -> R and sigma(i) is an element of L(R-d, R-d), 1 <= d < infinity.
引用
收藏
页码:501 / 508
页数:8
相关论文
共 10 条
[1]  
Barbu V, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4419-5542-5
[2]  
Barbu V., VARIATIONAL APPROACH
[3]  
Barbu V, 2012, Convexity and Optimization in Banach Spaces, V4th
[4]  
Barbu V., 1984, RES NOTES MATH, V100
[5]   An operatorial approach to stochastic partial differential equations driven by linear multiplicative noise [J].
Barbu, Viorel ;
Roeckner, Michael .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (07) :1789-1815
[6]   Optimal Control Approach to Nonlinear Diffusion Equations Driven by Wiener Noise [J].
Barbu, Viorel .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 153 (01) :1-26
[7]   A variational approach to stochastic nonlinear parabolic problems [J].
Barbu, Viorel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 384 (01) :2-15
[8]   EXISTENCE OF STRONG SOLUTIONS FOR STOCHASTIC POROUS MEDIA EQUATION UNDER GENERAL MONOTONICITY CONDITIONS [J].
Barbu, Viorel ;
Da Prato, Giuseppe ;
Roeckner, Michael .
ANNALS OF PROBABILITY, 2009, 37 (02) :428-452
[9]   Stochastic variational inequalities on non-convex domains [J].
Buckdahn, Rainer ;
Maticiuc, Lucian ;
Pardoux, Etienne ;
Rascanu, Aurel .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (12) :7332-7374
[10]  
Prevot C., 2007, LECT NOTES MATH