High-resolution optical remote sensing imagery change detection through deep transfer learning

被引:16
作者
Larabi, Mohammed El Amin [1 ,2 ]
Chaib, Souleyman [3 ]
Bakhti, Khadidja [1 ,4 ]
Hasni, Kamel [1 ]
Bouhlala, Mohammed Amine [1 ]
机构
[1] Algerian Space Agcy, Ctr Tech Spatiales, Ave Palestine, Arzew, Algeria
[2] Beihang Univ, Sch Comp Sci & Engn, Beijing, Peoples R China
[3] Harbin Inst Technol, Sch Comp Sci, Harbin, Peoples R China
[4] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing, Peoples R China
关键词
change detection; deep learning; convolutional neural network; remote sensing; hyperfeatures; hypervectors; BUILDING CHANGE DETECTION; SENSED IMAGES; MAP;
D O I
10.1117/1.JRS.13.046512
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Change detection is a challenging task that has received much attention in the remote sensing field. Whereas numerous remote sensing change detection methods have been developed, the efficiency of these approaches is insufficient to meet the real-world applications' requirements. Recently, deep learning methods have been largely used for remote sensing imagery change detection, most of these approaches are limited by their training dataset. However, adapting a pretrained convolutional neural network (CNN) on an image classification task to change detection is extremely challenging. An automatic land cover/use change detection approach based on fast and accurate frameworks for optical high-resolution remote sensing imagery is proposed. The fast framework is designed for applications that require immediate results with less complexity. The accurate framework is designed for applications that require high levels of precision, it decomposes large images into small processing blocks and forwards them into CNN. The proposed frameworks can learn transferable features from one task to another and escape the use of the expensive and inaccurate handcrafted features and the requirements of the big training dataset. A number of experiments were carried out to validate the proposed approach on three real bitemporal images. The experimental results illustrate the superiority of the proposed approach over other state-of-the-art methods. (C) 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:18
相关论文
共 52 条
[11]   A SEMANTIC-BASED MULTILEVEL APPROACH TO CHANGE DETECTION IN VERY HIGH GEOMETRICAL RESOLUTION MULTITEMPORAL IMAGES [J].
Bruzzone, Lorenzo ;
Bovolo, Francesca .
2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, :229-232
[12]   Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering [J].
Celik, Turgay .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (04) :772-776
[13]   The devil is in the details: an evaluation of recent feature encoding methods [J].
Chatfield, Ken ;
Lempitsky, Victor ;
Vedaldi, Andrea ;
Zisserman, Andrew .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
[14]   Object-based change detection [J].
Chen, Gang ;
Hay, Geoffrey J. ;
Carvalho, Luis M. T. ;
Wulder, Michael A. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (14) :4434-4457
[15]   Digital change detection methods in ecosystem monitoring: a review [J].
Coppin, P ;
Jonckheere, I ;
Nackaerts, K ;
Muys, B ;
Lambin, E .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (09) :1565-1596
[16]   PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data [J].
Deng, J. S. ;
Wang, K. ;
Deng, Y. H. ;
Qi, G. J. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (16) :4823-4838
[17]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[18]   An analysis of land use/cover change using the combination of MSS Landsat and land use map - A case study in Yogyakarta, Indonesia [J].
Dimyati, M ;
Mizuno, K ;
Kobayashi, S ;
Kitamura, T .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1996, 17 (05) :931-944
[19]   Sparse Hierarchical Clustering for VHR Image Change Detection [J].
Ding, Kun ;
Huo, Chunlei ;
Xu, Yuan ;
Zhong, Zisha ;
Pan, Chunhong .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (03) :577-581
[20]  
DONAHUE J, 2014, P INT C MACH LEARN, P647