The Han-Li conjecture in constant scalar curvature and constant boundary mean curvature problem on compact manifolds

被引:12
作者
Chen, Xuezhang [1 ,2 ]
Ruan, Yuping [1 ,2 ,4 ]
Sun, Liming [3 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, IMS, Nanjing 210093, Jiangsu, Peoples R China
[3] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[4] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
中国国家自然科学基金;
关键词
Mountain Pass Lemma; Conformal Fermi coordinates; Boundary Yamabe problem; Positive mass theorem; YAMABE PROBLEM; FLAT METRICS; CONFORMAL DEFORMATION; UNIQUENESS THEOREMS; EXISTENCE THEOREM; CONVERGENCE; FLOWS;
D O I
10.1016/j.aim.2019.106854
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Han-Li conjecture states that: Let (M, go) be an ndimensional (n >= 3) smooth compact Riemannian manifold with boundary having positive (generalized) Yamabe constant and c be any real number, then there exists a conformal metric of g(0) with scalar curvature 1 and boundary mean curvature c. Combining with Z.C. Han and Y.Y. Li's results, we answer this conjecture affirmatively except for the case that n >= 8, the boundary is umbilic, the Weyl tensor of M vanishes on the boundary and has an interior non-zero point. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:56
相关论文
共 32 条
[1]   A positive mass theorem for asymptotically flat manifolds with a non-compact boundary [J].
Almaraz, Sergio ;
Barbosa, Ezequiel ;
de Lima, Levi Lopes .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2016, 24 (04) :673-715
[2]   Convergence of scalar-flat metrics on manifolds with boundary under a Yamabe-type flow [J].
Almaraz, Sergio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) :2626-2694
[3]   AN EXISTENCE THEOREM OF CONFORMAL SCALAR-FLAT METRICS ON MANIFOLDS WITH BOUNDARY [J].
Almaraz, Sergio de Moura .
PACIFIC JOURNAL OF MATHEMATICS, 2010, 248 (01) :1-22
[4]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[5]   A multiplicity result for the Yamabe problem on Sn [J].
Ambrosetti, A ;
Malchiodi, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 168 (02) :529-561
[6]  
Araújo H, 2004, COMMUN ANAL GEOM, V12, P487
[7]   Critical points of the Total Scalar Curvature plus Total Mean Curvature functional [J].
Araújo, H .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (01) :85-107
[8]  
Brendle S, 2005, J DIFFER GEOM, V69, P217
[9]   An existence theorem for the Yamabe problem on manifolds with boundary [J].
Brendle, S. ;
Chen, S. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (05) :991-1016
[10]  
BRENDLE S., 2002, Asian J. Math., V6, P625