Silicon Asymmetric Membranes for Efficient Lithium Storage: A Scalable Method

被引:7
作者
Wu, Ji [1 ]
Chen, Hao [2 ]
Padgett, Clifford [3 ]
机构
[1] Georgia So Univ, Dept Chem, Statesboro, GA 30460 USA
[2] Georgia So Univ, Dept Biol, Statesboro, GA 30460 USA
[3] Armstrong State Univ, Dept Chem & Phys, Savannah, GA 31419 USA
关键词
asymmetric membrane; lithium-ion batteries; phase inversion; porous materials; silicon; LI-ION BATTERIES; HIGH-CAPACITY; POLYSULFONE MEMBRANES; ANODES; FILM; POLYACRYLONITRILE; DESIGN; POLYMERIZATION; CHALLENGES; NANOWIRES;
D O I
10.1002/ente.201500315
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, scalable membrane technologies are adapted to obtain silicon asymmetric membranes for lithium-ion battery anodes. The unique asymmetric porous structure can provide both mechanical support and free volume to accommodate the large volume expansion during silicon lithiation, thus leading to excellent rate and cycling performance. An overall specific capacity as high as 1500mAhg(-1) was achieved at 100mAg(-1). Even at 1000mAg(-1), the capacity was still above 800mAhg(-1). More than 90% of the initial capacity was retained after 200cycles. It was also observed that a lower Si content and higher carbonization temperature can help achieve stable cycling performance in general. This report is significant in terms of demonstrating a simplistic, generic, and scalable method to create a robust, porous asymmetric membrane structure for efficient lithium-ion storage.
引用
收藏
页码:502 / 509
页数:8
相关论文
共 49 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Thin-film lithium and lithium-ion batteries [J].
Bates, JB ;
Dudney, NJ ;
Neudecker, B ;
Ueda, A ;
Evans, CD .
SOLID STATE IONICS, 2000, 135 (1-4) :33-45
[3]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[4]   Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers [J].
Chen, ZH ;
Christensen, L ;
Dahn, JR .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (11) :919-923
[5]  
Choi N.-S., 2012, ANGEW CHEM, V124, P10134
[6]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[7]   Evaluation of the phase inversion process as an application method for synthetic polymers in conservation work [J].
Doménech-Carbó, MT ;
Aura-Castro, E .
STUDIES IN CONSERVATION, 1999, 44 (01) :19-28
[8]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[9]   Advanced Multiphase Silicon-Based Anodes for High-Energy-Density Li-Ion Batteries [J].
Goldshtein, K. ;
Freedman, K. ;
Schneier, D. ;
Burstein, L. ;
Ezersky, V. ;
Peled, E. ;
Golodnitsky, D. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) :A1072-A1079
[10]   Structured silicon anodes for lithium battery applications [J].
Green, M ;
Fielder, E ;
Scrosati, B ;
Wachtler, M ;
Serra Moreno, J .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (05) :A75-A79