Existence and monotone scheme for time-periodic nonquasimonotone reaction-diffusion systems: Application to autocatalytic chemistry

被引:19
作者
Leung, AW [1 ]
Ortega, LA
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[2] Univ Nacl Colombia, Dept Math, Bogota, Colombia
关键词
D O I
10.1006/jmaa.1998.5943
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article considers time-periodic reaction-diffusion systems. The reaction terms are sums of quasimonotone nondecreasing and nonincreasing functions. Dirichlet and Robin boundary conditions are included. The existence of periodic solutions is shown under appropriate conditions. Monotone approximating sequences closing in on the solutions from above and below are constructed. Application to autocatalysis in chemistry is given. (C) 1998 Academic Press.
引用
收藏
页码:712 / 733
页数:22
相关论文
共 12 条
[1]  
AMANN H, 1978, NONLINEAR ANAL, V29
[2]  
FIFE P, 1964, ARCH RATION MECH AN, V16, P155
[3]   PERIODIC OPTIMAL-CONTROL FOR PARABOLIC VOLTERRA-LOTKA TYPE EQUATIONS [J].
HE, FY ;
LEUNG, A ;
STOJANOVIC, S .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1995, 18 (02) :127-146
[4]  
Hess P., 1991, Pitman Res. Notes in Mathematics
[5]   GLOBAL EXISTENCE AND BOUNDEDNESS IN REACTION-DIFFUSION SYSTEMS [J].
HOLLIS, SL ;
MARTIN, RH ;
PIERRE, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (03) :744-761
[6]  
LADYZENSKAJA OA, 1968, TYPE AM MATH SOC TRA, V33
[7]  
Leung A., 1989, SYSTEMS NONLINEAR PA
[8]   GLOBAL EXISTENCE FOR SEMILINEAR PARABOLIC-SYSTEMS [J].
MORGAN, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (05) :1128-1144
[9]  
Nicolis G., 1995, INTRO NONLINEAR SCI
[10]  
Pao C.V., 1992, NONLINEAR PARABOLIC, DOI DOI 10.1007/978-1-4615-3034-3