ELECTROCHEMICAL MODEL-BASED ADAPTIVE ESTIMATION OF LI-ION BATTERY STATE OF CHARGE

被引:0
|
作者
Lotfi, N. [1 ]
Landers, R. G. [1 ]
Li, J. [1 ]
Park, J. [1 ]
机构
[1] Missouri S&T, MAE Dept, Rolla, MO USA
关键词
OF-CHARGE; MANAGEMENT-SYSTEMS; PARAMETER; FILTER;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electrochemical model-based estimation techniques have attracted increasing attention in the past decade due to their inherent insight about the internal battery operating conditions and limits while being able to monitor important li-ion battery states. The applicability of these methods is, however, limited due to the implementation complexity of their underlying models. In order to facilitate online implementation while maintaining the physical insight, a reduced-order electrochemical model is used in this work. This model, which is based on the commonly-used single particle model, is further improved by incorporating the electrolyte-phase potential. Furthermore, an output-injection observer, suitable for online implementation, is proposed to estimate SOC. The observer convergence is proved analytically using Lyapunov theory. Although the proposed observer shows great performance at low C rates, its accuracy deteriorates at high C-rates. To overcome this issue and achieve accurate SOC estimates for such charge/discharge rates, an adaptation algorithm is augmented to the observer. The adaptation algorithm, which can be implemented online, is used to compensate for model uncertainties, especially at higher C rates. Finally, simulation results based on a full-order electrochemical model are used to validate the observer performance and effectiveness.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Noise Adaptive Moving Horizon Estimation for State-of-Charge Estimation of Li-Ion Battery
    Zhang, Ziqi
    Xue, Binqiang
    Fan, Jianming
    IEEE ACCESS, 2021, 9 : 5250 - 5259
  • [12] An Approach for State of Charge Estimation of Li-ion Battery Based on Thevenin Equivalent Circuit model
    Chen, Bing
    Ma, Haodong
    Fang, Hongzheng
    Fan, Huanzhen
    Luo, Kai
    Fan, Bin
    PROCEEDINGS OF 2014 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-2014 HUNAN), 2014, : 647 - 652
  • [13] State of charge estimation for Li-ion battery based on model from extreme learning machine
    Du, Jiani
    Liu, Zhitao
    Wang, Youyi
    CONTROL ENGINEERING PRACTICE, 2014, 26 : 11 - 19
  • [14] An Improved Model-Based Self-Adaptive Filter for Online State-of-Charge Estimation of Li-Ion Batteries
    Zhang, Chi
    Yan, Fuwu
    Du, Changqing
    Rizzoni, Giorgio
    APPLIED SCIENCES-BASEL, 2018, 8 (11):
  • [15] State of charge estimation for Li-ion battery based on extended Kalman filter
    Li Zhi
    Zhang Peng
    Wang Zhifu
    Song Qiang
    Rong Yinan
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 3515 - 3520
  • [16] Estimation of Li-ion Battery State of Charge Based on Extended Kalman Filtering
    Ma Yan
    Bai Qingwen
    Liang Liang
    Chen Hong
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 6815 - 6819
  • [17] Li-ion Battery State of Charge Estimation Based on Comprehensive Kalman Filter
    Gu M.
    Xia C.
    Tian C.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2019, 34 (02): : 419 - 426
  • [18] Active equalization control strategy of Li-ion battery based on state of charge estimation of an electrochemical-thermal coupling model
    Lin, Yuzhen
    Xu, Xing
    Wang, Feng
    Xu, Qiling
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (05) : 3778 - 3789
  • [19] An adaptive strategy for Li-ion battery internal state estimation
    Di Domenico, Domenico
    Prada, Eric
    Creff, Yann
    CONTROL ENGINEERING PRACTICE, 2013, 21 (12) : 1851 - 1859
  • [20] State of Charge Estimation Based On Improved Li-ion Battery Model Using Extended Kalman Filter
    Zhou, Xiang
    Zhang, Bingzhan
    Zhao, Han
    Shen, Weixiang
    Kapoor, Ajay
    PROCEEDINGS OF THE 2013 IEEE 8TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2013, : 607 - 612