Asteroseismological constraints on the structure of the ZZ Ceti stars L19-2 and GD 165

被引:61
作者
Bradley, PA [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
stars : evolution; stars; individual; (L19-2; GD; 165); stars : oscillations; white dwarfs;
D O I
10.1086/320454
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This study compares the theoretical pulsation periods from an extensive grid of evolutionary DA white dwarf models with the observed periods of the ZZ Ceti white dwarfs L19-2 and GD 165, in order to constrain their internal structure. Our analysis of the rotational fine-structure splitting and comparison of our theoretical periods with observations for L19-2 and GD 165 enable us to identify the observed modes as low-order l = 1 and 2 g-modes. Because the period structure of GD 165 is quite similar to that of L19-2, we believe that the interior structure of GD 165 is similar. The short period of the l = 1 118.5 s mode of L19-2 (120.4 s mode of GD 165) implies a hydrogen layer mass of about 10(-4) M-*, independent of constraints from the other pulsation modes. Detailed model fitting shows that L19-2 has a hydrogen layer mass of 1.0 x 10(-4) M-*, a helium layer mass of 1.0 x 10(-2) M-*, a 20:80 C/O core that extends out to 0.60 M-*, a stellar mass of 0.72 M-., and a rotation period of about 13 hr. The best-fitting models for GD 165 have a hydrogen layer mass of 1.5 to 2.0 x 10(-4) M-*, a helium layer mass of 1.5 to 2.0 x 10(-2) M-*, a 20:80 C/O core that extends out to 0.65 M-*, a stellar mass of 0.65-0.68 M-., and a rotation period of about 58 hr. In both cases, the best-fitting models are consistent with the spectroscopic log g-value, and the seismological parallax is within 1 sigma of the observed parallax value.
引用
收藏
页码:326 / 339
页数:14
相关论文
共 46 条