Gaussian-Based Pooling for Convolutional Neural Networks

被引:0
|
作者
Kobayashi, Takumi [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, 1-1-1 Umezono, Tsukuba, Ibaraki, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks (CNNs) contain local pooling to effectively downsize feature maps for increasing computation efficiency as well as robustness to input variations. The local pooling methods are generally formulated in a form of convex combination of local neuron activations for retaining the characteristics of an input feature map in a manner similar to image downscaling. In this paper, to improve performance of CNNs, we propose a novel local pooling method based on the Gaussian-based probabilistic model over local neuron activations for flexibly pooling (extracting) features, in contrast to the previous model restricting the output within the convex hull of local neurons. In the proposed method, the local neuron activations are aggregated into the statistics of mean and standard deviation in a Gaussian distribution, and then on the basis of those statistics, we construct the probabilistic model suitable for the pooling in accordance with the knowledge about local pooling in CNNs. Through the probabilistic model equipped with trainable parameters, the proposed method naturally integrates two schemes of adaptively training the pooling form based on input feature maps and stochastically performing the pooling throughout the end-to-end learning. The experimental results on image classification demonstrate that the proposed method favorably improves performance of various CNNs in comparison with the other pooling methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Kernel Pooling for Convolutional Neural Networks
    Cui, Yin
    Zhou, Feng
    Wang, Jiang
    Liu, Xiao
    Lin, Yuanqing
    Belongie, Serge
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3049 - 3058
  • [2] Pooling in Graph Convolutional Neural Networks
    Cheung, Mark
    Shi, John
    Jiang, Lavender
    Wright, Oren
    Moura, Jose M. F.
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 462 - 466
  • [3] Cascaded pooling for Convolutional Neural Networks
    Devi, Nilakshi
    Borah, Bhogeswar
    2018 FOURTEENTH INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING (ICINPRO) - 2018, 2018, : 155 - 159
  • [4] Mixed Pooling for Convolutional Neural Networks
    Yu, Dingjun
    Wang, Hanli
    Chen, Peiqiu
    Wei, Zhihua
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, RSKT 2014, 2014, 8818 : 364 - 375
  • [5] Rank-based pooling for deep convolutional neural networks
    Shi, Zenglin
    Ye, Yangdong
    Wu, Yunpeng
    NEURAL NETWORKS, 2016, 83 : 21 - 31
  • [6] Information Entropy Based Feature Pooling for Convolutional Neural Networks
    Wan, Weitao
    Chen, Jiansheng
    Li, Tianpeng
    Huang, Yiqing
    Tian, Jingqi
    Yu, Cheng
    Xue, Youze
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3404 - 3413
  • [7] A Comparison of Pooling Methods for Convolutional Neural Networks
    Zafar, Afia
    Aamir, Muhammad
    Nawi, Nazri Mohd
    Arshad, Ali
    Riaz, Saman
    Alruban, Abdulrahman
    Dutta, Ashit Kumar
    Almotairi, Sultan
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [8] A improved pooling method for convolutional neural networks
    Zhao, Lei
    Zhang, Zhonglin
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [9] A Hybrid Pooling Method for Convolutional Neural Networks
    Tong, Zhiqiang
    Aihara, Kazuyuki
    Tanaka, Gouhei
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II, 2016, 9948 : 454 - 461
  • [10] Gaussian-Based Runtime Detection of Out-of-distribution Inputs for Neural Networks
    Hashemi, Vahid
    Kretinsky, Jan
    Mohr, Stefanie
    Seferis, Emmanouil
    RUNTIME VERIFICATION (RV 2021), 2021, 12974 : 254 - 264