Prediction of Multidimensional Spatial Variation Data via Bayesian Tensor Completion

被引:5
作者
Luan, Jiali [1 ,2 ]
Zhang, Zheng [3 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[3] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
Testing; Probes; Semiconductor device measurement; Arrays; Bayes methods; Numerical models; Bayesian statistics; data analytics; process variation; tensor; tensor completion; variation modeling; UNCERTAINTY QUANTIFICATION; STATISTICAL FRAMEWORK; EXTRACTION; PROBE;
D O I
10.1109/TCAD.2019.2891987
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a multidimensional computational method to predict the spatial variation data inside and across multiple dies of a wafer. This technique is based on tensor computation. A tensor is a high-dimensional generalization of a matrix or a vector. By exploiting the hidden low-rank property of a high-dimensional data array, the large amount of unknown variation testing data may be predicted from a few random measurement samples. The tensor rank, which decides the complexity of a tensor representation, is decided by an available variational Bayesian approach. Our approach is validated by a practical chip testing data set, and it can be easily generalized to characterize the process variations of multiple wafers. Our approach is more efficient than the previous virtual probe techniques in terms of memory and computational cost when handling high-dimensional chip testing data.
引用
收藏
页码:547 / 551
页数:5
相关论文
共 50 条
  • [41] Low-CP-Rank Tensor Completion via Practical Regularization
    Jiahua Jiang
    Fatoumata Sanogo
    Carmeliza Navasca
    Journal of Scientific Computing, 2022, 91
  • [42] Low-CP-Rank Tensor Completion via Practical Regularization
    Jiang, Jiahua
    Sanogo, Fatoumata
    Navasca, Carmeliza
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (01)
  • [43] Tensor Completion for Alzheimer's Disease Prediction From Diffusion Tensor Imaging
    Gou, Yixin
    Liu, Yipeng
    He, Fei
    Hunyadi, Borbala
    Zhu, Ce
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (07) : 2211 - 2223
  • [44] Differentially Private Federated Tensor Completion for Cloud-Edge Collaborative AIoT Data Prediction
    Yang, Zecan
    Xiong, Botao
    Chen, Kai
    Yang, Laurence T.
    Deng, Xianjun
    Zhu, Chenlu
    He, Yuanyuan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (01) : 256 - 267
  • [45] Poisson tensor completion with transformed correlated total variation regularization
    Feng, Qingrong
    Hou, Jingyao
    Kong, Weichao
    Xu, Chen
    Wang, Jianjun
    PATTERN RECOGNITION, 2024, 156
  • [46] Millimeter Wave Beam Recommendation via Tensor Completion
    Chou, Tzu-Hsuan
    Michelusi, Nicolo
    Love, David J.
    Krogmeier, James, V
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [47] TENSOR COMPLETION VIA FUNCTIONAL SMOOTH COMPONENT DEFLATION
    Yokota, Tatsuya
    Cichocki, Andrzej
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 2514 - 2518
  • [48] Tensor completion via nonconvex tensor ring rank minimization with guaranteed convergence
    Ding, Meng
    Huang, Ting-Zhu
    Zhao, Xi-Le
    Ma, Tian-Hui
    SIGNAL PROCESSING, 2022, 194
  • [49] Anomaly Detection of Hyperspectral Image via Tensor Completion
    Wang, Jingxuan
    Xia, Yong
    Zhang, Yanning
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (06) : 1099 - 1103
  • [50] Tensor Robust Kernel PCA for Multidimensional Data
    Lin, Jie
    Huang, Ting-Zhu
    Zhao, Xi-Le
    Ji, Teng-Yu
    Zhao, Qibin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (02) : 2662 - 2674