Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers

被引:479
作者
Zhao, Dewei [1 ,2 ]
Chen, Cong [1 ,2 ,3 ]
Wang, Changlei [1 ,2 ,3 ]
Junda, Maxwell M. [1 ,2 ]
Song, Zhaoning [1 ,2 ]
Grice, Corey R. [1 ,2 ]
Yu, Yue [1 ,2 ]
Li, Chongwen [1 ,2 ]
Subedi, Biwas [1 ,2 ]
Podraza, Nikolas J. [1 ,2 ]
Zhao, Xingzhong [3 ]
Fang, Guojia [3 ]
Xiong, Ren-Gen [4 ,5 ]
Zhu, Kai [6 ]
Yan, Yanfa [1 ,2 ]
机构
[1] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA
[2] Univ Toledo, Wright Ctr Photovolta Innovat & Commercializat, 2801 W Bancroft St, Toledo, OH 43606 USA
[3] Wuhan Univ, Key Lab Artificial Micro Nano Struct, Minist Educ, Sch Phys & Technol, Wuhan, Hubei, Peoples R China
[4] Nanchang Univ, Ordered Matter Sci Res Ctr, Nanchang, Jiangxi, Peoples R China
[5] Southeast Univ, Jiangsu Key Lab Sci & Applicat Mol Ferroelect, Nanjing, Jiangsu, Peoples R China
[6] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO USA
来源
NATURE ENERGY | 2018年 / 3卷 / 12期
关键词
HALIDE PEROVSKITES; ABSORPTION-EDGE; TIN; PHOTOVOLTAICS; SPECTROSCOPY; FABRICATION; GROWTH; IODIDE;
D O I
10.1038/s41560-018-0278-x
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Multi-junction all-perovskite tandem solar cells are a promising choice for next-generation solar cells with high efficiency and low fabrication cost. However, the lack of high-quality low-bandgap perovskite absorber layers seriously hampers the development of efficient and stable two-terminal monolithic all-perovskite tandem solar cells. Here, we report a bulk-passivation strategy via incorporation of chlorine, to enlarge grains and reduce electronic disorder in mixed tin-lead low-bandgap (similar to 1.25 eV) perovskite absorber layers. This enables the fabrication of efficient low-bandgap perovskite solar cells using thick absorber layers (similar to 750 nm), which is a requisite for efficient tandem solar cells. Such improvement enables the fabrication of two-terminal all-perovskite tandem solar cells with a champion power conversion efficiency of 21% and steady-state efficiency of 20.7%. The efficiency is retained to 85% of its initial performance after 80 h of operation under continuous illumination.
引用
收藏
页码:1093 / 1100
页数:8
相关论文
共 55 条
[31]   Preparation of Single-Phase Films of CH3NH3Pb(I1-x,Brx)3 with Sharp Optical Band Edges [J].
Sadhanala, Aditya ;
Deschler, Felix ;
Thomas, Tudor H. ;
Dutton, Sian E. ;
Goedel, Karl C. ;
Hanusch, Fabian C. ;
Lai, May L. ;
Steiner, Ullrich ;
Bein, Thomas ;
Docampo, Pablo ;
Cahen, David ;
Friend, Richard H. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (15) :2501-2505
[32]  
Shao YC, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2015.1, 10.1038/nenergy.2015.1]
[33]   Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells [J].
Shao, Yuchuan ;
Xiao, Zhengguo ;
Bi, Cheng ;
Yuan, Yongbo ;
Huang, Jinsong .
NATURE COMMUNICATIONS, 2014, 5
[34]   Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells [J].
Shin, Seong Sik ;
Yeom, Eun Joo ;
Yang, Woon Seok ;
Hur, Seyoon ;
Kim, Min Gyu ;
Im, Jino ;
Seo, Jangwon ;
Noh, Jun Hong ;
Seok, Sang Il .
SCIENCE, 2017, 356 (6334) :167-171
[35]   A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques [J].
Song, Zhaoning ;
McElvany, Chad L. ;
Phillips, Adam B. ;
Celik, Ilke ;
Krantz, Patrick W. ;
Watthage, Suneth C. ;
Liyanage, Geethika K. ;
Apul, Defne ;
Heben, Michael J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (06) :1297-1305
[36]   Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI2-CH3NH3I-H2O System [J].
Song, Zhaoning ;
Abate, Antonio ;
Watthage, Suneth C. ;
Liyanage, Geethika K. ;
Phillips, Adam B. ;
Steiner, Ullrich ;
Graetzel, Michael ;
Heben, Michael J. .
ADVANCED ENERGY MATERIALS, 2016, 6 (19)
[37]   Direct observation of an inhomogeneous chlorine distribution in CH3NH3PbI3-xClx layers: surface depletion and interface enrichment [J].
Starr, David E. ;
Sadoughi, Golnaz ;
Handick, Evelyn ;
Wilks, Regan G. ;
Alsmeier, Jan H. ;
Koehler, Leonard ;
Gorgoi, Mihaela ;
Snaith, Henry J. ;
Baer, Marcus .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (05) :1609-1615
[38]   Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties [J].
Stoumpos, Constantinos C. ;
Malliakas, Christos D. ;
Kanatzidis, Mercouri G. .
INORGANIC CHEMISTRY, 2013, 52 (15) :9019-9038
[39]   Efficient and stable solution-processed planar perovskite solar cells via contact passivation [J].
Tan, Hairen ;
Jain, Ankit ;
Voznyy, Oleksandr ;
Lan, Xinzheng ;
de Arquer, F. Pelayo Garcia ;
Fan, James Z. ;
Quintero-Bermudez, Rafael ;
Yuan, Mingjian ;
Zhang, Bo ;
Zhao, Yicheng ;
Fan, Fengjia ;
Li, Peicheng ;
Quan, Li Na ;
Zhao, Yongbiao ;
Lu, Zheng-Hong ;
Yang, Zhenyu ;
Hoogland, Sjoerd ;
Sargent, Edward H. .
SCIENCE, 2017, 355 (6326) :722-726
[40]   Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells [J].
Werner, Jeremie ;
Barraud, Loris ;
Walter, Arnaud ;
Braeuninger, Matthias ;
Sahli, Florent ;
Sacchetto, Davide ;
Tetreault, Nicolas ;
Paviet-Salomon, Bertrand ;
Moon, Soo-Jin ;
Allebe, Christophe ;
Despeisse, Matthieu ;
Nicolay, Sylvain ;
De Wolf, Stefaan ;
Niesen, Bjoern ;
Ballif, Christophe .
ACS ENERGY LETTERS, 2016, 1 (02) :474-480