Biodegradation of Chlorinated and Non-chlorinated VOCs from Pharmaceutical Industries

被引:26
作者
Balasubramanian, P. [1 ]
Philip, Ligy [1 ]
Bhallamudi, S. Murty [1 ]
机构
[1] IIT Madras, Dept Civil Engn, Environm & Water Resources Engn Div, Madras 600036, Tamil Nadu, India
关键词
Biodegradation; Substrate inhibition kinetics; Organic solvents; Volatile organic compounds; Pharmaceutical industry; HIGH-CONCENTRATION ISOPROPANOL; MODELING SUBSTRATE INTERACTIONS; TRICHOSPORIUM OB3B; MIXTURES; KINETICS; COMETABOLISM; METABOLISM; TOXICITY; SOLVENTS; GROWTH;
D O I
10.1007/s12010-010-9057-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Biodegradation studies were conducted for major organic solvents such as methanol, ethanol, isopropanol, acetone, acetonitrile, toluene, chloroform, and carbon tetrachloride commonly used in pharmaceutical industries. Various microbial isolates were enriched and screened for their biodegradation potential. An aerobic mixed culture that had been previously enriched for biodegradation of mixed pesticides was found to be the most effective. All the organic solvents except chloroform and carbon tetrachloride were consumed as primary substrates by this mixed culture. Biodegradation rates of methanol, ethanol, isopropanol, acetone, acetonitrile, and toluene were measured individually in batch systems. Haldane model was found to best fit the kinetics of biodegradation. Biokinetic parameters estimated from single-substrate experiments were utilized to simulate the kinetics of biodegradation of mixture of substrates. Among the various models available for simulating the kinetics of biodegradation of multi-substrate systems, competitive inhibition model performed the best. Performance of the models was evaluated statistically using the dimensionless modified coefficient of efficiency (E). This model was used for simulating the kinetics of biodegradation in binary, ternary, and quaternary substrate systems. This study also reports batch experiments on co-metabolic biodegradation of chloroform, with acetone and toluene as primary substrates. The Haldane model, modified for inhibition due to chloroform, could satisfactorily predict the biodegradation of primary substrate, chloroform, and the microbial growth.
引用
收藏
页码:497 / 518
页数:22
相关论文
共 48 条