Asymptotic behavior of the stationary magnetohydrodynamic equations in an exterior domain

被引:0
作者
Fan, Huiying [1 ]
Wang, Meng [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou, Peoples R China
关键词
NAVIER-STOKES EQUATION; DECAY; EXISTENCE; SYSTEM;
D O I
10.1063/5.0058652
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the asymptotic behavior of solutions to the incompressible magnetohydrodynamic (MHD) equations in an exterior domain. We will show that, under some assumption, any nontrivial velocity field u and magnetic field h obey a minimal decaying rate exp(-C|x|(2) log |x|) at infinity. Our proof is based on appropriate Carleman estimates. As a consequence, we establish a Liouville-type result for the three dimensional incompressible MHDs in an exterior domain.
引用
收藏
页数:12
相关论文
共 19 条
[1]   KINETIC FOR MULATION AND GLOBAL EXISTENCE FOR THE HALL-MAGNETO-HYDRODYNAMICS SYSTEM [J].
Acheritogaray, Marion ;
Degond, Pierre ;
Frouvelle, Amic ;
Liu, Jian-Guo .
KINETIC AND RELATED MODELS, 2011, 4 (04) :901-918
[2]   Non-uniform decay of MHD equations with and without magnetic diffusion [J].
Agapito, Ruben ;
Schonbek, Maria .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (10-12) :1791-1812
[3]   On localization in the continuous Anderson-Bernoulli model in higher dimension [J].
Bourgain, J ;
Kenig, CE .
INVENTIONES MATHEMATICAE, 2005, 161 (02) :389-426
[4]  
DUVAUT G, 1972, ARCH RATION MECH AN, V46, P241
[5]  
DYER RH, 1969, J LONDON MATH SOC, V44, P340
[6]  
Finn R., 1965, Proc. Sympos. Appl. Math., P121, DOI DOI 10.1090/PSAPM/017/9933
[7]  
Galdi GP, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-09620-9
[8]   DECAY OF SOLUTIONS TO MAGNETOHYDRODYNAMICS EQUATIONS IN 2 SPACE DIMENSIONS [J].
GUO, BL ;
ZHANG, LH .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 449 (1935) :79-91
[9]  
Hormander Lars, 2007, CLASSICS MATH, VIII