Applied machine learning in cancer research: A systematic review for patient diagnosis, classification and prognosis

被引:44
|
作者
Kourou, Konstantina [1 ,7 ]
Exarchos, Konstantinos P. [2 ]
Papaloukas, Costas [3 ]
Sakaloglou, Prodromos [4 ,5 ]
Exarchos, Themis [6 ]
Fotiadis, Dimitrios I. [1 ,7 ]
机构
[1] Univ Ioannina, Dept Mat Sci & Engn, Unit Med Technol & Intelligent Informat Syst, Ioannina, Greece
[2] Univ Ioannina, Fac Med, Dept Resp Med, Ioannina, Greece
[3] Univ Ioannina, Dept Biol Applicat & Technol, Ioannina, Greece
[4] Ioannina Univ Hosp, Unit Liquid Biopsy Oncol, Dept Precis & Mol Med, Ioannina, Greece
[5] Univ Ioannina, Fac Med, Sch Hlth Sci, Lab Med Genet Clin Pract, Ioannina, Greece
[6] Ionian Univ, Dept Informat, Corfu, Greece
[7] Fdn Res & Technol Hellas, Inst Mol Biol & Biotechnol, Dept Biomed Res, GR-45110 Ioannina, Greece
基金
欧盟地平线“2020”;
关键词
Artificial intelligence; Machine learning; Cancer prognosis; Survival; Clinical outcome prediction; Explainability; Transparency; Trustworthiness; ARTIFICIAL-INTELLIGENCE; PROSTATE-CANCER; DEEP; PREDICTION; NETWORK;
D O I
10.1016/j.csbj.2021.10.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Artificial Intelligence (AI) has recently altered the landscape of cancer research and medical oncology using traditional Machine Learning (ML) algorithms and cutting-edge Deep Learning (DL) architectures. In this review article we focus on the ML aspect of AI applications in cancer research and present the most indicative studies with respect to the ML algorithms and data used. The PubMed and dblp databases were considered to obtain the most relevant research works of the last five years. Based on a comparison of the proposed studies and their research clinical outcomes concerning the medical ML application in cancer research, three main clinical scenarios were identified. We give an overview of the well-known DL and Reinforcement Learning (RL) methodologies, as well as their application in clinical practice, and we briefly discuss Systems Biology in cancer research. We also provide a thorough examination of the clinical scenarios with respect to disease diagnosis, patient classification and cancer prognosis and survival. The most relevant studies identified in the preceding year are presented along with their primary findings. Furthermore, we examine the effective implementation and the main points that need to be addressed in the direction of robustness, explainability and transparency of predictive models. Finally, we summarize the most recent advances in the field of AI/ML applications in cancer research and medical oncology, as well as some of the challenges and open issues that need to be addressed before data-driven models can be implemented in healthcare systems to assist physicians in their daily practice. (C) 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
引用
收藏
页码:5546 / 5555
页数:10
相关论文
共 50 条
  • [21] Machine Learning and Computer Vision Based Methods for Cancer Classification: A Systematic Review
    Mukadam, Sufiyan Bashir
    Patil, Hemprasad Yashwant
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (05) : 3015 - 3050
  • [22] Machine learning-based patient classification system for adults with stroke: A systematic review
    Ruksakulpiwat, Suebsarn
    Thongking, Witchuda
    Zhou, Wendie
    Benjasirisan, Chitchanok
    Phianhasin, Lalipat
    Schiltz, Nicholas K.
    Brahmbhatt, Smit
    CHRONIC ILLNESS, 2023, 19 (01) : 26 - 39
  • [23] Machine Learning for Lung Cancer Diagnosis,Treatment, and Prognosis
    Yawei Li
    Xin Wu
    Ping Yang
    Guoqian Jiang
    Yuan Luo
    Genomics,Proteomics & Bioinformatics, 2022, Proteomics & Bioinformatics2022 (05) : 850 - 866
  • [24] Machine Learning for Lung Cancer Diagnosis, Treatment, and Prognosis
    Li, Yawei
    Wu, Xin
    Yang, Ping
    Jiang, Guoqian
    Luo, Yuan
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2022, 20 (05) : 850 - 866
  • [25] Machine Learning Approaches for Breast Cancer Diagnosis and Prognosis
    Sharma, Ayush
    Kulshrestha, Sudhanshu
    Daniel, Sibi
    2017 INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS (ICSOFTCOMP), 2017,
  • [26] Machine learning-based diagnosis and prognosis of IgAN: A systematic review and meta-analysis
    Zhuang, Kaiting
    Wang, Wenjuan
    Xu, Cheng
    Guo, Xinru
    Ren, Xuejing
    Liang, Yanjun
    Duan, Zhiyu
    Song, Yanqi
    Zhang, Yifan
    Cai, Guangyan
    HELIYON, 2024, 10 (12)
  • [27] Application of Machine Learning and Word Embeddings in the Classification of Cancer Diagnosis Using Patient Anamnesis
    Ramos Magna, Andres Alejandro
    Allende-Cid, Hector
    Taramasco, Carla
    Becerra, Carlos
    Figueroa, Rosa L.
    IEEE ACCESS, 2020, 8 (08): : 106198 - 106213
  • [28] Diagnosis and prognosis of melanoma from dermoscopy images using machine learning and deep learning: a systematic literature review
    Naseri, Hoda
    Safaei, Ali A.
    BMC CANCER, 2025, 25 (01)
  • [29] Patient-Oriented Questionnaires and Machine Learning for Rare Disease Diagnosis: A Systematic Review
    Brauner, Lea Eileen
    Yao, Yao
    Grigull, Lorenz
    Klawonn, Frank
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (17)
  • [30] A review of supervised machine learning applied to ageing research
    Fabio Fabris
    João Pedro de Magalhães
    Alex A. Freitas
    Biogerontology, 2017, 18 : 171 - 188