MITTAG-LEFFLER-HYERS-ULAM-RASSIAS STABILITY OF DETERMINISTIC SEMILINEAR FRACTIONAL VOLTERRA INTEGRAL EQUATION AND OF STOCHASTIC SYSTEMS BY BROWNIAN MOTION

被引:0
|
作者
Moharramnia, A. [1 ]
Eghbali, N. [1 ]
Rassias, J. M. [2 ]
机构
[1] Univ Mohaghegh Ardabili, Fac Sci, Dept Math & Applicat, Ardebil 5619911367, Iran
[2] Natl & Kapodistrian Univ Athens, Pedag Dept Math, 4 Agamemnonos Str, Aghia Paraskevi 15342, Attikis, Greece
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2020年 / 82卷 / 01期
关键词
Mittag-Leffler-Hyers-Ulam stability; Mittag-Leffler-Hyers-Ulam-Rassias stability; deterministic Volterra integral equation; Chebyshev norm; Bielecki norm; Asymptotic stability; FIXED-POINT APPROACH; DIFFERENTIAL-EQUATIONS; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define and investigate Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of deterministic semilinear fractional Volterra integral equation. Also, we prove that this equation is stable with respect to the Chebyshev and Bielecki norms. The stability of stochastic systems driven by Brownian motion has also been studied.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 42 条
  • [1] Fuzzy Mittag-Leffler-Hyers-Ulam-Rassias Stability of Stochastic Differential Equations
    Chaharpashlou, Reza
    Saadati, Reza
    Lopes, Antonio M.
    MATHEMATICS, 2023, 11 (09)
  • [2] A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation
    Eghbali, Nasrin
    Kalvandi, Vida
    Rassias, John M.
    OPEN MATHEMATICS, 2016, 14 : 237 - 246
  • [3] Mittag-Leffler-Hyers-Ulam stability of Prabhakar fractional integral equation
    Moharramnia, A.
    Eghbali, N.
    Rassias, J. M.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 25 - 33
  • [4] Ulam-Hyers-Mittag-Leffler Stability for a Class of Nonlinear Fractional Reaction-Diffusion Equations with Delay
    Shah, Rahim
    Irshad, Natasha
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2025, 64 (01)
  • [5] ULAM-HYERS-RASSIAS MITTAG-LEFFLER STABILITY FOR THE DARBOUX PROBLEM FOR PARTIAL FRACTIONAL DIFFERENTIAL EQUATIONS
    Ben Makhlouf, Abdellatif
    Boucenna, Djalal
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 51 (05) : 1541 - 1551
  • [6] ULAM-HYERS-MITTAG-LEFFLER STABILITY OF FRACTIONAL DIFFERENCE EQUATIONS WITH DELAY
    Butt, Rabia Ilyas
    Rehman, Mujeeb Ur
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (03) : 891 - 901
  • [7] On Ulam-Hyers-Mittag-Leffler Stability of Fractional Integral Equations Containing Multiple Variable Delays
    Tunc, Osman
    Tunc, Cemil
    MATHEMATICS, 2025, 13 (04)
  • [8] Mittag-Leffler-Hyers-Ulam Stability of Delay Fractional Differential Equation via Fractional Fourier Transform
    Ganesh, Anumanthappa
    Govindan, Vediyappan
    Lee, Jung Rye
    Mohanapriya, Arusamy
    Park, Choonkil
    RESULTS IN MATHEMATICS, 2021, 76 (04)
  • [9] Ulam-Hyers-Rassias stability for fuzzy fractional integral equations
    Vu, H.
    Rassias, J. M.
    Van Hoa, N.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2020, 17 (02): : 17 - 27
  • [10] Hyers-Ulam-Rassias-Wright Stability for Fractional Oscillation Equation
    Eidinejad, Zahra
    Saadati, Reza
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022