Non-uniform sand retention behavior often occurs to the serviced screen deteriorating erosion. However, this phenomenon is poorly understood. This paper presents a numerical study of the sand retention on wire wrapped screens, with special reference to non-uniform behaviors. This is done by the combined approach of computational fluid dynamics (CFD) and discrete element method (DEM). The validity of the model has been validated for dry and wet sand screen systems. It is used here to study sand retention behaviors at different solid concentrations and particle size distributions (PSD). Via this model, five distinct sand retention modes are identified: No sand retention (Mode I), partial sand retention (Mode II), sand retention with slow sequential bridging (Mode III), sand retention with fast sequential bridging (Model IV) and sand retention with instantaneous bridging (Mode V). Modes II and III belong to non-uniform sand retention, which develops strong local flows that induce local erosion or hot spot on the screen. A phase diagram is introduced to predict these five modes and their transition with respect to solid concentration and PSD. Additionally, the predicted flow and force structures are analyzed in detail. The results indicate that the bridging over a slot heavily relies on the particle accumulation on the screen. A new screen with a converging slot configuration is proposed to improve this particle accumulation. This improvement helps develop uniform sand retention on the screen. (c) 2021 Elsevier B.V. All rights reserved.
机构:
George Washington Univ, Dept Civil & Environm Engn, Washington, DC 20052 USAGeorge Washington Univ, Dept Civil & Environm Engn, Washington, DC 20052 USA
ElGhoraiby, Mohamed A.
Manzari, Majid T.
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Civil & Environm Engn, Washington, DC 20052 USAGeorge Washington Univ, Dept Civil & Environm Engn, Washington, DC 20052 USA
机构:
Tianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin, Peoples R China
South China Univ Technol, South China Inst Geotech Engn, State Key Lab Subtrop Bldg Sci, 381 Wushan Rd, Guangzhou 510640, Peoples R ChinaTianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin, Peoples R China
Zhou, Shujin
Zhou, Mi
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, South China Inst Geotech Engn, State Key Lab Subtrop Bldg Sci, 381 Wushan Rd, Guangzhou 510640, Peoples R ChinaTianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin, Peoples R China
Zhou, Mi
Zhang, Xihong
论文数: 0引用数: 0
h-index: 0
机构:
Curtin Univ, Sch Civil & Mech Engn, Kent St, Bentley, WA 6102, AustraliaTianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin, Peoples R China
Zhang, Xihong
Tian, Yinghui
论文数: 0引用数: 0
h-index: 0
机构:
Univ Melbourne, Fac Engn & Informat Technol, Dept Infrastruct Engn, Parkville, Vic 3010, AustraliaTianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin, Peoples R China