Coefficient-Wise Tree-Based Varying Coefficient Regression with vcrpart

被引:7
作者
Buergin, Reto [1 ]
Ritschard, Gilbert [2 ]
机构
[1] Swiss Natl Ctr Competence Res LIVES, Holzikofenweg 3, CH-3007 Bern, Switzerland
[2] Swiss Natl Ctr Competence Res LIVES, Ctr Acacias 4, IDESO, Route Acacias 54, CH-1227 Carouge, Switzerland
来源
JOURNAL OF STATISTICAL SOFTWARE | 2017年 / 80卷 / 06期
基金
瑞士国家科学基金会;
关键词
regression trees; varying coefficient models; generalized linear models; statistical learning; R package; CART; SELECTION; TESTS;
D O I
10.18637/jss.v080.i06
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The tree-based TVCM algorithm and its implementation in the R package vcrpart are introduced for generalized linear models. The purpose of TVCM is to learn whether and how the coefficients of a regression model vary by moderating variables. A separate partition is built for each potentially varying coefficient, allowing the user to specify coefficient-specific sets of potential moderators, and allowing the algorithm to select moderators individually by coefficient. In addition to describing the algorithm, the TVCM is evaluated using a benchmark comparison and a simulation study and the R commands are demonstrated by means of empirical applications.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条
[41]   Kernel Regression with Coefficient-based lq-regularization [J].
Shi, Lei ;
Huang, Xiaolin ;
Feng, Yunlong ;
Suykens, Johan A. K. .
JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
[42]   Statistical consistency of coefficient-based conditional quantile regression [J].
Cai, Jia ;
Xiang, Dao-Hong .
JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 149 :1-12
[43]   Sparse regression for low-dimensional time-dynamic varying coefficient models with application to air quality data [J].
Liang, Jinwen ;
Tian, Maozai .
JOURNAL OF APPLIED STATISTICS, 2023, 50 (06) :1378-1399
[44]   Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity [J].
Y. Andriyana ;
I. Gijbels ;
A. Verhasselt .
Statistical Papers, 2018, 59 :1589-1621
[45]   Sieve M-estimation for semiparametric varying-coefficient partially linear regression model [J].
Hu Tao ;
Cui HengJian .
SCIENCE CHINA-MATHEMATICS, 2010, 53 (08) :1995-2010
[46]   Estimation and inference in functional varying-coefficient single-index quantile regression models [J].
Zhu, Hanbing ;
Zhang, Tong ;
Zhang, Yuanyuan ;
Lian, Heng .
JOURNAL OF NONPARAMETRIC STATISTICS, 2024, 36 (03) :643-672
[47]   Implementing cascaded regression tree-based face landmarking: An in-depth overview [J].
Perrot, Romuald ;
Bourdon, Pascal ;
Helbert, David .
IMAGE AND VISION COMPUTING, 2020, 102
[48]   Tree-based multivariate regression and density estimation with right-censored data [J].
Molinaro, AM ;
Dudoit, S ;
van der Laan, MJ .
JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 90 (01) :154-177
[49]   Detection of spatial heterogeneity based on spatial autoregressive varying coefficient models [J].
Mei, Chang-Lin ;
Chen, Feng .
SPATIAL STATISTICS, 2022, 51
[50]   Research and application of Lasso regression model based on prior coefficient framework [J].
Wu, Rongzhi ;
He, Li ;
Peng, Lei ;
Wang, Zepeng ;
Wang, Weigang .
INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2021, 13 (01) :42-53