Coefficient-Wise Tree-Based Varying Coefficient Regression with vcrpart

被引:7
作者
Buergin, Reto [1 ]
Ritschard, Gilbert [2 ]
机构
[1] Swiss Natl Ctr Competence Res LIVES, Holzikofenweg 3, CH-3007 Bern, Switzerland
[2] Swiss Natl Ctr Competence Res LIVES, Ctr Acacias 4, IDESO, Route Acacias 54, CH-1227 Carouge, Switzerland
来源
JOURNAL OF STATISTICAL SOFTWARE | 2017年 / 80卷 / 06期
基金
瑞士国家科学基金会;
关键词
regression trees; varying coefficient models; generalized linear models; statistical learning; R package; CART; SELECTION; TESTS;
D O I
10.18637/jss.v080.i06
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The tree-based TVCM algorithm and its implementation in the R package vcrpart are introduced for generalized linear models. The purpose of TVCM is to learn whether and how the coefficients of a regression model vary by moderating variables. A separate partition is built for each potentially varying coefficient, allowing the user to specify coefficient-specific sets of potential moderators, and allowing the algorithm to select moderators individually by coefficient. In addition to describing the algorithm, the TVCM is evaluated using a benchmark comparison and a simulation study and the R commands are demonstrated by means of empirical applications.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条
  • [31] Estimation for the Power-transformed Varying-coefficient Quantile Regression Model
    Lu, Yiqiang
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (14) : 2617 - 2633
  • [32] Sparse reduced-rank regression for multivariate varying-coefficient models
    Zhang, Fode
    Li, Rui
    Lian, Heng
    Bandyopadhyay, Dipankar
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (04) : 752 - 767
  • [33] Local Walsh-average regression for semiparametric varying-coefficient models
    Shang, Suoping
    Zou, Changliang
    Wang, Zhaojun
    [J]. STATISTICS & PROBABILITY LETTERS, 2012, 82 (10) : 1815 - 1822
  • [34] Composite quantile regression for varying-coefficient single-index models
    Fan, Yan
    Tang, Manlai
    Tian, Maozai
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (10) : 3027 - 3047
  • [35] Robust statistical inference for varying-coefficient partially linear instrumental variable model based on modal regression
    Xiao, Yanting
    Dong, Wanying
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025, 54 (03) : 925 - 941
  • [36] Robust estimation and outlier detection for varying-coefficient models via penalized regression
    Yang, Guangren
    Xiang, Sijia
    Yao, Weixin
    Xu, Lin
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) : 5845 - 5856
  • [37] Weighted quantile regression and testing for varying-coefficient models with randomly truncated data
    Xu, Hong-Xia
    Fan, Guo-Liang
    Chen, Zhen-Long
    Wang, Jiang-Feng
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2018, 102 (04) : 565 - 588
  • [38] Estimation and testing for varying-coefficient single-index quantile regression models
    Ding, Hui
    Yao, Mei
    Zhang, Riquan
    Zhang, Zhenglong
    Zhu, Hanbing
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2025, 239
  • [39] Weighted quantile regression and testing for varying-coefficient models with randomly truncated data
    Hong-Xia Xu
    Guo-Liang Fan
    Zhen-Long Chen
    Jiang-Feng Wang
    [J]. AStA Advances in Statistical Analysis, 2018, 102 : 565 - 588
  • [40] Prediction of water solubility and Setschenow coefficients by tree-based regression strategies
    De Stefano, Concetta
    Lando, Gabriele
    Malegori, Cristina
    Oliveri, Paolo
    Sammartano, Silvio
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2019, 282 : 401 - 406