Coefficient-Wise Tree-Based Varying Coefficient Regression with vcrpart

被引:7
作者
Buergin, Reto [1 ]
Ritschard, Gilbert [2 ]
机构
[1] Swiss Natl Ctr Competence Res LIVES, Holzikofenweg 3, CH-3007 Bern, Switzerland
[2] Swiss Natl Ctr Competence Res LIVES, Ctr Acacias 4, IDESO, Route Acacias 54, CH-1227 Carouge, Switzerland
来源
JOURNAL OF STATISTICAL SOFTWARE | 2017年 / 80卷 / 06期
基金
瑞士国家科学基金会;
关键词
regression trees; varying coefficient models; generalized linear models; statistical learning; R package; CART; SELECTION; TESTS;
D O I
10.18637/jss.v080.i06
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The tree-based TVCM algorithm and its implementation in the R package vcrpart are introduced for generalized linear models. The purpose of TVCM is to learn whether and how the coefficients of a regression model vary by moderating variables. A separate partition is built for each potentially varying coefficient, allowing the user to specify coefficient-specific sets of potential moderators, and allowing the algorithm to select moderators individually by coefficient. In addition to describing the algorithm, the TVCM is evaluated using a benchmark comparison and a simulation study and the R commands are demonstrated by means of empirical applications.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条
  • [21] Clustered spatio-temporal varying coefficient regression model
    Lee, Junho
    Kamenetsky, Maria E.
    Gangnon, Ronald E.
    Zhu, Jun
    STATISTICS IN MEDICINE, 2021, 40 (02) : 465 - 480
  • [22] A Systematic Review of Quantile Regression in Varying Coefficient Models for Longitudinal Data
    Tantular, B.
    Ruchjana, B. N.
    Andriyana, Y.
    Verhasselt, A.
    ENGINEERING LETTERS, 2022, 30 (04) : 1504 - 1513
  • [23] Boosted Varying-Coefficient Regression Models for Product Demand Prediction
    Wang, Jianqiang C.
    Hastie, Trevor
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (02) : 361 - 382
  • [24] Smooth backfitting for errors-in-variables varying coefficient regression models
    Han, Kyunghee
    Lee, Young K.
    Park, Byeong U.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 145
  • [25] P-splines quantile regression estimation in varying coefficient models
    Y. Andriyana
    I. Gijbels
    A. Verhasselt
    TEST, 2014, 23 : 153 - 194
  • [26] P-splines quantile regression estimation in varying coefficient models
    Andriyana, Y.
    Gijbels, I.
    Verhasselt, A.
    TEST, 2014, 23 (01) : 153 - 194
  • [27] Tree-based identification of subgroups for time-varying covariate survival data
    Bertolet, Marnie
    Brooks, Maria M.
    Bittner, Vera
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (01) : 488 - 501
  • [28] Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity
    Andriyana, Y.
    Gijbels, I.
    Verhasselt, A.
    STATISTICAL PAPERS, 2018, 59 (04) : 1589 - 1621
  • [29] SCAD-penalized regression for varying-coefficient models with autoregressive errors
    Qiu, Jia
    Li, Degao
    You, Jinhong
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 137 : 100 - 118
  • [30] Varying-coefficient mean-covariance regression analysis for longitudinal data
    Liu, Shu
    Li, Guodong
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 160 : 89 - 106