Semicircle Law for Generalized Curie-Weiss Matrix Ensembles at Subcritical Temperature

被引:9
作者
Kirsch, Werner [1 ]
Kriecherbauer, Thomas [2 ]
机构
[1] Fern Univ Hagen, Fak Math & Informat, Hagen, Germany
[2] Univ Bayreuth, Math Inst, Bayreuth, Germany
关键词
Random matrices; Semicircle law; Curie-Weiss model; DEPENDENT ENTRIES; SYMMETRIC-MATRICES; LIMIT-THEOREMS; EIGENVALUES;
D O I
10.1007/s10959-017-0768-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Hochstattler et al. (J Theor Probab 29:1047-1068, 2016) showed that the semicircle law holds for generalized Curie-Weiss matrix ensembles at or above the critical temperature. We extend their result to the case of subcritical temperatures for which the correlations between the matrix entries are stronger. Nevertheless, one may use the concept of approximately uncorrelated ensembles that was first introduced in Hochstattler et al. (2016). In order to do so, one needs to remove the average magnetization of the entries by an appropriate modification of the ensemble that turns out to be of rank 1, thus not changing the limiting spectral measure.
引用
收藏
页码:2446 / 2458
页数:13
相关论文
共 28 条
[1]  
Anderson G. W., 2010, INTRO RANDOM MATRICE
[2]  
[Anonymous], 2011, MATH SURV MONOGR
[3]  
[Anonymous], 1973, Russ. Math. Surv., DOI 10.1070/RM1973v028n01ABEH001396
[4]  
[Anonymous], 2010, SPRINGER SER STAT
[5]   WIGNERS SEMICIRCLE LAW FOR EIGENVALUES OF RANDOM MATRICES [J].
ARNOLD, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 19 (03) :191-&
[7]   Spectral measure of large random Hankel, Markov and Toeplitz matrices [J].
Bryc, W ;
Dembo, A ;
Jiang, TF .
ANNALS OF PROBABILITY, 2006, 34 (01) :1-38
[8]  
Ellis R. S., 2006, Classics in Mathematics, V1985
[9]   The Semicircle Law for Matrices with Independent Diagonals [J].
Friesen, Olga ;
Loewe, Matthias .
JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (04) :1084-1096
[10]   A phase transition for the limiting spectral density of random matrices [J].
Friesen, Olga ;
Loewe, Matthias .
ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 :1-17