Anchoring Hydrous RuO2 on Graphene Sheets for High-Performance Electrochemical Capacitors

被引:1098
作者
Wu, Zhong-Shuai [1 ]
Wang, Da-Wei [2 ]
Ren, Wencai [1 ]
Zhao, Jinping [1 ]
Zhou, Guangmin [1 ]
Li, Feng [1 ]
Cheng, Hui-Ming [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[2] Univ Queensland, ARC Ctr Excellence Funct Nanomat, AIBN, Brisbane, Qld 4072, Australia
基金
美国国家科学基金会;
关键词
WALLED CARBON NANOTUBE; RUTHENIUM OXIDE; ENERGY-STORAGE; GRAPHITE OXIDE; SUPERCAPACITOR APPLICATION; ELECTRODE MATERIALS; MESOPOROUS CARBON; NANOPARTICLES; ULTRACAPACITORS; POLYANILINE;
D O I
10.1002/adfm.201001054
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrous ruthenium oxide (RuO2)/graphene sheet composites (ROGSCs) with different loadings of Ru are prepared by combining sol-gel and low-temperature annealing processes. The graphene sheets (GSs) are well-separated by fine RuO2 particles (5-20 nm) and, simultaneously, the RuO2 particles are anchored by the richly oxygen-containing functional groups of reduced, chemically exfoliated GSs onto their surface. Benefits from the combined advantages of GSs and RuO2 in such a unique structure are that the ROGSC-based supercapacitors exhibit high specific capacitance (similar to 570 F g(-1) for 38.3 wt% Ru loading), enhanced rate capability, excellent electrochemical stability (similar to 97.9% retention after 1000 cycles), and high energy density (20.1 Wh kg(-1)) at low operation rate (100 mA g(-1)) or high power density (10000 W kg(-1)) at a reasonable energy density (4.3 Wh kg(-1)). Interestingly, the total specific capacitance of ROGSCs is higher than the sum of specific capacitances of pure GSs and pure RuO2 in their relative ratios, which is indicative of a positive synergistic effect of GSs and RuO2 on the improvement of electrochemical performance. These findings demonstrate the importance and great potential of graphene-based composites in the development of high-performance energy-storage systems.
引用
收藏
页码:3595 / 3602
页数:8
相关论文
共 50 条
  • [1] High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole
    An, KH
    Jeon, KK
    Heo, JK
    Lim, SC
    Bae, DJ
    Lee, YH
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (08) : A1058 - A1062
  • [2] An KH, 2001, ADV FUNCT MATER, V11, P387, DOI 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO
  • [3] 2-G
  • [4] Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide
    Arabale, G
    Wagh, D
    Kulkarni, M
    Mulla, IS
    Vernekar, SP
    Vijayamohanan, K
    Rao, AM
    [J]. CHEMICAL PHYSICS LETTERS, 2003, 376 (1-2) : 207 - 213
  • [5] Ultracapacitors: why, how, and where is the technology
    Burke, A
    [J]. JOURNAL OF POWER SOURCES, 2000, 91 (01) : 37 - 50
  • [6] Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices
    Conway, BE
    Pell, WG
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2003, 7 (09) : 637 - 644
  • [7] High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support
    Fan, Li-Zhen
    Hu, Yong-Sheng
    Maier, Joachim
    Adelhelm, Philipp
    Smarsly, Bernd
    Antonietti, Markus
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (16) : 3083 - 3087
  • [8] Carbon materials for the electrochemical storage of energy in capacitors
    Frackowiak, E
    Béguin, F
    [J]. CARBON, 2001, 39 (06) : 937 - 950
  • [9] Carbon materials for supercapacitor application
    Frackowiak, Elzbieta
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (15) : 1774 - 1785
  • [10] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191