ON THE K-STABILITY OF FANO VARIETIES AND ANTICANONICAL DIVISORS

被引:84
作者
Fujita, Kento [1 ]
Odaka, Yuji [2 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
[2] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
Fano varieties; K-stability; Kahler-Einstein metrics; KAHLER-EINSTEIN METRICS; COMPACT MODULI SPACES; SCALAR CURVATURE; MANIFOLDS; LIMITS; BOUNDS;
D O I
10.2748/tmj/1546570823
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply a recent theorem of Li and the first author to give some criteria for the K-stability of Fano varieties in terms of anticanonical Q-divisors. First, we propose a condition in terms of certain anti-canonical Q-divisors of given Fano variety, which we conjecture to be equivalent to the K-stability. We prove that it is at least a sufficient condition and also related to the Berman-Gibbs stability. We also give another algebraic proof of the K-stability of Fano varieties which satisfy Tian's alpha invariants condition.
引用
收藏
页码:511 / 521
页数:11
相关论文
共 37 条
[1]  
[Anonymous], 2013, Cambridge Tracts in Mathematics
[2]   Kahler-Einstein metrics, canonical random point processes and birational geometry [J].
Berman, Robert J. .
ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 1, 2018, 97 :29-73
[3]   K-polystability of Q-Fano varieties admitting Kahler-Einstein metrics [J].
Berman, Robert J. .
INVENTIONES MATHEMATICAE, 2016, 203 (03) :973-1025
[4]  
Boucksom S, 2017, ANN I FOURIER, V67, P743
[5]   Geometry of Kahler metrics and foliations by holomorphic discs [J].
Chen, X. X. ;
Tian, G. .
PUBLICATIONS MATHEMATIQUES, NO 107, 2008, 107 (107) :1-107
[6]  
Chen XX, 2015, J AM MATH SOC, V28, P235
[7]  
Chen XX, 2015, J AM MATH SOC, V28, P199
[8]  
Demailly J.-P., 2008, RUSSIAN MATH SURVEYS, V63, P945
[9]   Uniform Stability of Twisted Constant Scalar Curvature Kahler Metrics [J].
Dervan, Ruadhai .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (15) :4728-4783
[10]   KAHLER-EINSTEIN METRICS AND THE GENERALIZED FUTAKI INVARIANT [J].
DING, WY ;
TIAN, G .
INVENTIONES MATHEMATICAE, 1992, 110 (02) :315-335