SARS-CoV-2 Spike mutations modify the interaction between virus Spike and human ACE2 receptors

被引:4
|
作者
Mishra, Pushpendra Mani [1 ,2 ,3 ]
Anjum, Farhan [1 ,2 ,3 ]
Uversky, Vladimir N. [4 ,5 ]
Nandi, Chayan Kanti [1 ,2 ,3 ,6 ]
机构
[1] Indian Inst Technol, Sch Basic Sci, Mandi 175005, HP, India
[2] Indian Inst Technol, Adv Mat Res Ctr, Mandi 175005, HP, India
[3] Indian Inst Technol, Biox Ctr, Mandi 175005, HP, India
[4] Univ S Florida, Dept Mol Med, Morsani Coll Med, Tampa, FL 33620 USA
[5] Univ S Florida, Byrd Alzheimers Res Inst, Morsani Coll Med, Tampa, FL 33620 USA
[6] Indian Inst Technol Mandi, Sch Basic Sci, Mandi, Himachal Prades, India
关键词
COVID-19; SARS-CoV-2; Mutation; Spikeprotein; Interfaceresidues; BINDING DOMAIN;
D O I
10.1016/j.bbrc.2022.06.064
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The high mutability of the SARS-CoV-2 virus is a growing concern among scientific communities and health professionals since it brings the effectiveness of repurposed drugs and vaccines for COVID-19 into question. Although the mutational investigation of the Spike protein of the SARS-CoV-2 virus has been confirmed by many different researchers, there is no thorough investigation carried out at the interacting region to reveal the mutational status and its associated severity. All the energetically favorable muta-tions and their detailed analytical features that could impact the infection severity of the SARS-CoV-2 virus need to be identified. Therefore, we have thoroughly investigated the most important site of the SARS-CoV-2 virus, which is the interface region (Residue 417-505) of the virus Spike that interacts with the human ACE2 receptor. Further, we have utilized molecular dynamic simulation to observe the relative stability of the Spike protein with partner ACE2, as a consequence of these mutations. In our study, we have identified 52 energetically favorable Spike mutations at the interface while binding to ACE2, of which only 36 significantly enhance the stabilization of the Spike-ACE2 complex. The stability order and molecular interactions of these mutations were also identified. The highest stabilizing mu-tation V503D confirmed in our study is also known for neutralization resistance.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:8 / 14
页数:7
相关论文
共 50 条
  • [1] CEBIT screening for inhibitors of the interaction between SARS-CoV-2 spike and ACE2
    Pei, Gaofeng
    Xu, Weifan
    Lan, Jun
    Wang, Xinquan
    Li, Pilong
    FUNDAMENTAL RESEARCH, 2022, 2 (04): : 562 - 569
  • [2] Endothelial glycocalyx shields the interaction of SARS-CoV-2 spike protein with ACE2 receptors
    Marta Targosz-Korecka
    Agata Kubisiak
    Damian Kloska
    Aleksandra Kopacz
    Anna Grochot-Przeczek
    Marek Szymonski
    Scientific Reports, 11
  • [3] Endothelial glycocalyx shields the interaction of SARS-CoV-2 spike protein with ACE2 receptors
    Targosz-Korecka, Marta
    Kubisiak, Agata
    Kloska, Damian
    Kopacz, Aleksandra
    Grochot-Przeczek, Anna
    Szymonski, Marek
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [4] Temperature Influences the Interaction between SARS-CoV-2 Spike from Omicron Subvariants and Human ACE2
    Gong, Shang Yu
    Ding, Shilei
    Benlarbi, Mehdi
    Chen, Yaozong
    Vezina, Dani
    Marchitto, Lorie
    Beaudoin-Bussieres, Guillaume
    Goyette, Guillaume
    Bourassa, Catherine
    Bo, Yuxia
    Medjahed, Halima
    Levade, Ines
    Pazgier, Marzena
    Cote, Marceline
    Richard, Jonathan
    Prevost, Jeremie
    Finzi, Andres
    VIRUSES-BASEL, 2022, 14 (10):
  • [5] Mechanism and evolution of human ACE2 binding by SARS-CoV-2 spike
    Wrobel, Antoni G.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 81
  • [6] MUTATIONS IN THE SARS-COV-2 SPIKE PROTEIN MODULATE THE VIRUS AFFINITY TO THE HUMAN ACE2 RECEPTOR, AN IN SILICO ANALYSIS
    Ortega, Joseph Thomas
    Pujol, Flor Helene
    Jastrzebska, Beata
    Rangel, Hector R.
    EXCLI JOURNAL, 2021, 20 : 585 - 600
  • [7] Critical Interactions Between the SARS-CoV-2 Spike Glycoprotein and the Human ACE2 Receptor
    Taka, Elhan
    Yilmaz, Sema Z.
    Golcuk, Mert
    Kilinc, Ceren
    Aktas, Umut
    Yildiz, Ahmet
    Gur, Mert
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (21): : 5537 - 5548
  • [8] Potential inhibitor for blocking binding between ACE2 and SARS-CoV-2 spike protein with mutations
    Tsai, Ming-Shao
    Shih, Wei-Tai
    Yang, Yao-Hsu
    Lin, Yu-Shih
    Chang, Geng-He
    Hsu, Cheng-Ming
    Yeh, Reming-Albert
    Shu, Li-Hsin
    Cheng, Yu-Ching
    Liu, Hung-Te
    Wu, Yu-Huei
    Wu, Yu-Heng
    Shen, Rou-Chen
    Wu, Ching-Yuan
    BIOMEDICINE & PHARMACOTHERAPY, 2022, 149
  • [9] Binding of SARS-CoV-2/SARS-CoV spike protein with human ACE2 receptor
    Koirala, Rajendra P.
    Thapa, Bidhya
    Khanal, Shyam P.
    Powrel, Jhulan
    Adhikari, Rajendra P.
    Adhikari, Narayan P.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (03):
  • [10] In silico evaluation of the interaction between ACE2 and SARS-CoV-2 Spike protein in a hyperglycemic environment
    Sartore, Giovanni
    Bassani, Davide
    Ragazzi, Eugenio
    Traldi, Pietro
    Lapolla, Annunziata
    Moro, Stefano
    SCIENTIFIC REPORTS, 2021, 11 (01)