Cauchy's residue theorem for a class of real valued functions

被引:4
作者
Saric, Branko [1 ,2 ]
机构
[1] Serbian Acad Arts & Sci, Math Inst, Belgrade 11001, Serbia
[2] Coll Tech Engn Profess Studies, Cacak 32000, Serbia
关键词
Kurzweil-Henstock integral; Cauchy's residue theorem;
D O I
10.1007/s10587-010-0068-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let [a, b] be an interval in a"e Rand let F be a real valued function defined at the endpoints of [a, b] and with a certain number of discontinuities within [a, b]. Assuming F to be differentiable on a set [a, b] \ E to the derivative f, where E is a subset of [a, b] at whose points F can take values +/-infinity or not be defined at all, we adopt the convention that F and f are equal to 0 at all points of E and show that KH-vt integral(a) (b) f = F(b) - F(a), where KH-vt denotes the total value of the Kurzweil-Henstock integral. The paper ends with a few examples that illustrate the theory.
引用
收藏
页码:1043 / 1048
页数:6
相关论文
共 5 条
[1]  
BARTLE RG, 2001, GRADUATE STUDIES MAT, V32
[2]   Convergence theorems for the H1-integral [J].
Garces, IJL ;
Lee, PY .
TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (03) :439-445
[3]  
GORDON RA, 1994, GRADUATE STUDIES MAT, V4, DOI DOI 10.1090/GSM/004
[4]  
Macdonald A., 2002, REAL ANAL EXCHANGE, V27, P739
[5]  
Sinha V., 2003, REAL ANAL EXCHANGE, V29, P979