Projective synchronization problem of a new Lorenz-Stenflo system by single input feedback controller

被引:0
作者
Sun, Zuosheng [1 ]
Guo, Rongwei [1 ]
机构
[1] Qilu Univ Technol, Sch Math & Stat, Shandong Acad Sci, Jinan 250353, Peoples R China
来源
PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021) | 2021年
关键词
Lorenz-Stenflo system; Projective synchronization; Dynamic feedback control; Linear feedback control; EQUATIONS; CHAOS;
D O I
10.1109/CCDC52312.2021.9601790
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the projective synchronization problem of a new Lorenz-Stenflo system. Firstly, the existence of the projective synchronization for the Lorenz-Stenflo system is proved. Then, two single input controllers are proposed, by which the projective synchronization problem of such system are realized. Finally, numerical simulations are used to verify the validity and effectiveness of the theoretical results.
引用
收藏
页码:6620 / 6623
页数:4
相关论文
共 50 条
[31]   A new chaotic system with fractional order and its projective synchronization [J].
Xiangjun Wu ;
Hui Wang .
Nonlinear Dynamics, 2010, 61 :407-417
[32]   A new chaotic system with fractional order and its projective synchronization [J].
Wu, Xiangjun ;
Wang, Hui .
NONLINEAR DYNAMICS, 2010, 61 (03) :407-417
[33]   Controlling and Synchronization of a New Lorenz-like System [J].
Yao, Qiguo ;
Su, Yuxiang ;
Li, Lili .
2018 7TH INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND COMPUTER SCIENCE (ICAMCS 2018), 2019, :95-101
[34]   Hybrid Projective Synchronization of a New Hyperchaotic System [J].
Yu, Jinchen ;
Zhang, Caiyan .
PROCEEDINGS OF 2013 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT AUTOMATION, 2013, 254 :385-392
[35]   Dynamics and synchronization of new hyperchaotic complex Lorenz system [J].
Mahmoud, Emad E. .
MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (7-8) :1951-1962
[36]   Adaptive synchronization for two identical generalized Lorenz chaotic systems via a single controller [J].
Lin, Jui-Sheng ;
Yan, Jun-Juh .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (02) :1151-1159
[37]   Adaptive modified function projective synchronization between hyperchaotic Lorenz system and hyperchaotic Lu system with uncertain parameters [J].
Sudheer, K. Sebastian ;
Sabir, M. .
PHYSICS LETTERS A, 2009, 373 (41) :3743-3748
[38]   A novel track control for Lorenz system with single state feedback [J].
Gao, Richie .
CHAOS SOLITONS & FRACTALS, 2019, 122 :236-244
[39]   Projective synchronization in a new 5D hyper-chaotic system [J].
Yi, Xiaofeng ;
Li, Yanping ;
Zhong, Laijun ;
Hu, Yaping ;
Guo, Rongwei ;
Zhou, Jin .
2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, :1011-1014
[40]   Projective synchronization of uncertain fractional order chaotic system using sliding mode controller [J].
Sun N. ;
Zhang H.-G. ;
Wang Z.-L. .
Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2010, 44 (07) :1288-1291