Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe

被引:65
作者
Vigouroux, C. [1 ]
Blumenstock, T. [2 ]
Coffey, M. [3 ]
Errera, Q. [1 ]
Garcia, O. [4 ]
Jones, N. B. [5 ]
Hannigan, J. W. [3 ]
Hase, F. [2 ]
Liley, B. [6 ]
Mahieu, E. [7 ]
Mellqvist, J. [8 ]
Notholt, J. [9 ]
Palm, M. [9 ]
Persson, G. [8 ]
Schneider, M. [4 ]
Servais, C. [7 ]
Smale, D. [6 ]
Tholix, L. [10 ]
De Maziere, M. [1 ]
机构
[1] Belgian Inst Space Aeron BIRA IASB, Dept Atmospher Composit, Brussels, Belgium
[2] Karlsruhe Inst Technol, Inst Meteorol & Climate Res IMK ASF, D-76021 Karlsruhe, Germany
[3] Natl Ctr Atmospher Res, Atmospher Chem Div, Boulder, CO 80307 USA
[4] Agencia Estatal Meteorol AEMET, IARC, Santa Cruz De Tenerife, Spain
[5] Univ Wollongong, Ctr Atmospher Chem, Wollongong, NSW, Australia
[6] Natl Inst Water & Atmospher Res Ltd NIWA, Dept Atmosphere, Lauder, New Zealand
[7] Univ Liege ULg, Inst Astrophys & Geophys, Liege, Belgium
[8] Chalmers, Dept Earth & Space Sci, S-41296 Gothenburg, Sweden
[9] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany
[10] FMI, Climate Res, Helsinki, Finland
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
TROPOSPHERIC OZONE; HIGH-RESOLUTION; DATA SET; SAGE II; RETRIEVAL; PROFILES; VARIABILITY; STRATOSPHERE; NETWORK;
D O I
10.5194/acp-15-2915-2015
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2% but also independent partial column amounts in about four vertical layers, one in the troposphere and three in the stratosphere up to about 45 km, with a precision of 5-6 %. We use eight of the Network for the Detection of Atmospheric Composition Change (NDACC) stations having a long-term time series of FTIR ozone measurements to study the total and vertical ozone trends and variability, namely, Ny-Alesund (79 degrees N), Thule (77 degrees N), Kiruna (68 degrees N), Harestua (60 degrees N), Jungfraujoch (47 degrees N), Izana (28 degrees N), Wollongong (34 degrees S) and Lauder (45 degrees S). The length of the FTIR time series varies by station but is typically from about 1995 to present. We applied to the monthly means of the ozone total and four partial columns a stepwise multiple regression model including the following proxies: solar cycle, quasi-biennial oscillation (QBO), El Nino-Southern Oscillation (ENSO), Arctic and Antarctic Oscillation (AO/AAO), tropopause pressure (TP), equivalent latitude (EL), Eliassen-Palm flux (EPF), and volume of polar stratospheric clouds (VPSC). At the Arctic stations, the trends are found mostly negative in the troposphere and lower stratosphere, very mixed in the middle stratosphere, positive in the upper stratosphere due to a large increase in the 1995-2003 period, and non-significant when considering the total columns. The trends for mid-latitude and subtropical stations are all non-significant, except at Lauder in the troposphere and upper stratosphere and at Wollongong for the total columns and the lower and middle stratospheric columns where they are found positive. At Jungfraujoch, the upper stratospheric trend is close to significance (+0.9 +/- 1.0% decade(-1)). Therefore, some signs of the onset of ozone mid-latitude recovery are observed only in the Southern Hemisphere, while a few more years seem to be needed to observe it at the northern mid-latitude station.
引用
收藏
页码:2915 / 2933
页数:19
相关论文
共 41 条
[1]   North Atlantic oscillation modulates total ozone winter trends [J].
Appenzeller, C ;
Weiss, AK ;
Staehelin, J .
GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (08) :1131-1134
[2]   Retrieval and characterization of ozone profiles from solar infrared spectra at the Jungfraujoch -: art. no. 4788 [J].
Barret, B ;
De Mazière, M ;
Demoulin, P .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D24)
[3]   A vertically resolved, global, gap-free ozone database for assessing or constraining global climate model simulations [J].
Bodeker, G. E. ;
Hassler, B. ;
Young, P. J. ;
Portmann, R. W. .
EARTH SYSTEM SCIENCE DATA, 2013, 5 (01) :31-43
[4]  
Brasseur G.P., 2005, Aeronomy of the Middle Atmosphere
[5]   Variability and trends in total and vertically resolved stratospheric ozone based on the CATO ozone data set [J].
Brunner, D. ;
Staehelin, J. ;
Maeder, J. A. ;
Wohltmann, I. ;
Bodeker, G. E. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :4985-5008
[6]   An 11-year solar cycle in tropospheric ozone from TOMS measurements [J].
Chandra, S ;
Ziemke, JR ;
Stewart, RW .
GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (02) :185-188
[7]   Total ozone trends and variability during 1979-2012 from merged data sets of various satellites [J].
Chehade, W. ;
Weber, M. ;
Burrows, J. P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (13) :7059-7074
[8]   On the detection of the solar signal in the tropical stratosphere [J].
Chiodo, G. ;
Marsh, D. R. ;
Garcia-Herrera, R. ;
Calvo, N. ;
Garcia, J. A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (11) :5251-5269
[9]   APPLICATION OF LEAST SQUARES REGRESSION TO RELATIONSHIPS CONTAINING AUTOCORRELATED ERROR TERMS [J].
COCHRANE, D ;
ORCUTT, GH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1949, 44 (245) :32-61
[10]   A new health check of the ozone layer at global and regional scales [J].
Coldewey-Egbers, Melanie ;
Loyola, Diego G. R. ;
Braesicke, Peter ;
Dameris, Martin ;
van Roozendael, Michel ;
Lerot, Christophe ;
Zimmer, Walter .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (12) :4363-4372