Polymer-inorganic hybrid proton conductive membranes: Effect of the interfacial transfer pathways

被引:41
作者
Chen, Pingping [1 ]
Hao, Lie [2 ]
Wu, Wenjia [1 ]
Li, Yifan [1 ]
Wang, Jingtao [1 ]
机构
[1] Zhengzhou Univ, Sch Chem Engn & Energy, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Int Coll, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
hybrid membrane; interfacial transfer pathway; single-kind filler; multi-kinds fillers; proton conduction property; POLY(ETHER ETHER KETONE); FUEL-CELL APPLICATIONS; HALLOYSITE CLAY NANOTUBES; MODIFIED GRAPHENE OXIDE; CROSS-LINKED CHITOSAN; EXCHANGE MEMBRANE; ELECTROLYTE MEMBRANES; NANOCOMPOSITE MEMBRANE; SELF-HUMIDIFICATION; COMPOSITE MEMBRANES;
D O I
10.1016/j.electacta.2016.07.001
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
For hybrid membrane, the polymer-inorganic interface along filler surface can be facilely created to be distinctive and controllable pathway for mass transfer. Herein, three kinds of fillers are used as inorganic additives including zero-dimensional silica (0-D, SiO2), one-dimensional halloysite nanotube (1-D, HNT), and two-dimensional graphene oxide (2-D, GO), which are functionalized by sulfonated polymer layer to ensure close surface component. Then the fillers are incorporated into two types of polymer matrixes (phase-separated sulfonated poly(ether ether ketone) and non-phase-separated chitosan) to prepare three series of hybrid membranes with single-kind filler, double-kinds fillers, or triple-kinds fillers, respectively. The microstructures, physicochemical properties, and proton conduction properties (under hydrated and anhydrous conditions) of the membranes are extensively investigated. It is found that (i) for the single-kind filler-filled membranes, 2-D filler has the strongest promotion ability for proton conductivity of membrane due to the constructed wide and long-range pathways for proton transfer; (ii) while for the hybrid membranes with double-kinds fillers, instead of synergistic promotion effect, the fillers cause more tortuous transfer pathways within membranes and then decrease proton conductivity; (iii) the hybrid membranes with triple-kinds fillers exhibit similar behavior but a little higher conductivity than the membranes with double-kinds fillers. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:426 / 439
页数:14
相关论文
共 69 条
[1]   Porous membrane based on chitosan-SiO2 for coin cell proton battery [J].
Alias, Siti Salwa ;
Ariff, Zulkifli Mohamad ;
Mohamad, Ahmad Azmin .
CERAMICS INTERNATIONAL, 2015, 41 (04) :5484-5491
[2]  
[Anonymous], 2015, SCI REP-UK
[3]   Acid-functionalized mesostructured aluminosilica for hydrophilic proton conduction membranes [J].
Athens, George L. ;
Ein-Eli, Yair ;
Chmelka, Bradley F. .
ADVANCED MATERIALS, 2007, 19 (18) :2580-+
[4]   Anhydrous proton exchange membranes comprising of chitosan and phosphorylated graphene oxide for elevated temperature fuel cells [J].
Bai, Huijuan ;
Li, Yifan ;
Zhang, Haoqin ;
Chen, Huiling ;
Wu, Wenjia ;
Wang, Jingtao ;
Liu, Jindun .
JOURNAL OF MEMBRANE SCIENCE, 2015, 495 :48-60
[5]   Nafion®/clay-SO3H membrane for proton exchange membrane fuel cell application [J].
Bebin, Philippe ;
Caravanier, Magaly ;
Galiano, Herve .
JOURNAL OF MEMBRANE SCIENCE, 2006, 278 (1-2) :35-42
[6]   RAFT/MADIX polymers for the preparation of polymer/inorganic nanohybrids [J].
Beija, Mariana ;
Marty, Jean-Daniel ;
Destarac, Mathias .
PROGRESS IN POLYMER SCIENCE, 2011, 36 (07) :845-886
[7]   Optically active SiO2/TiO2/polyacetylene multilayered nanospheres: Preparation, characterization, and application for low infrared emissivity [J].
Bu, Xiaohai ;
Zhou, Yuming ;
He, Man ;
Chen, Zhenjie ;
Zhang, Tao .
APPLIED SURFACE SCIENCE, 2014, 288 :444-451
[8]   Chitosan/heteropolyacid composite membranes for direct methanol fuel cell [J].
Cui, Zhiming ;
Xing, Wei ;
Liu, Changpeng ;
Liao, Jianhui ;
Zhang, Hong .
JOURNAL OF POWER SOURCES, 2009, 188 (01) :24-29
[9]   A simple new route to covalent organic/inorganic hybrid proton exchange polymeric membranes [J].
Di Vona, ML ;
Marani, D ;
D'Ottavi, C ;
Trombetta, M ;
Traversa, E ;
Beurroies, I ;
Knauth, P ;
Licoccia, S .
CHEMISTRY OF MATERIALS, 2006, 18 (01) :69-75
[10]   Structure of Membranes for Fuel Cells: SANS and SAXS Analyses of Sulfonated PEEK Membranes and Solutions [J].
Gebel, Gerard .
MACROMOLECULES, 2013, 46 (15) :6057-6066