PROM PRO-p IWAHORI-HECKE MODULES TO (φ, Γ)-MODULES, I

被引:10
作者
Grosse-Kloenne, Elmar [1 ]
机构
[1] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
关键词
REPRESENTATIONS;
D O I
10.1215/00127094-3450101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let o be the ring of integers in a finite extension K of Q(p), and let k be its residue field. Let G be a split reductive group over Q(p), and let T be a maximal split torus in G. Let H (G, I-0) be the pro-p Iwahori-Hecke o-algebra. Given a semi-infinite reduced chamber gallery (alcove walk) C-(center dot) in the T-stable apartment, a period phi is an element of N(T) of C-(center dot) of length r, and a homomorphism tau : Z(p)(x) -> T compatible with phi, we construct a functor from the category Mod(fin)(H(G, I-0)) of finite-length H (G, I-0)-modules to etale (phi(r), Gamma)-modules over Fontaine's ring O-epsilon. If G = GL(d+1) (Q(p)), then there are essentially two choices of (C-(center dot), phi, tau) with r = 1, both leading to a functor from Mod(fin)(H(G, I-0)) to etale (phi, Gamma)-modules and hence to Gal(Qp)-representations. Both induce a bijection between the set of absolutely simple supersingular H (G, I-0) circle times(0) k-modules of dimension d +1 and the set of irreducible representations of Gal(Qp) over k of dimension d + 1. We also compute these functors on modular reductions of tamely ramified locally unitary principal series representations of G over K. For d = 1, we recover Colmez's functor (when restricted to o-torsion GL(2)(Q(p))-representations generated by their pro-p Iwahori invariants).
引用
收藏
页码:1529 / 1595
页数:67
相关论文
共 16 条
[1]  
Balister P. N., 1997, ASIAN J MATH, V1, P224, DOI [10.4310/AJM.1997.v1.n2.a2, DOI 10.4310/AJM.1997.V1.N2.A2]
[2]   On some modular representations of the Borel subgroup of GL2(Qp) [J].
Berger, Laurent .
COMPOSITIO MATHEMATICA, 2010, 146 (01) :58-80
[3]   ORDINARY REPRESENTATIONS OF G(Qp) AND FUNDAMENTAL ALGEBRAIC REPRESENTATIONS [J].
Breuil, Christophe ;
Herzig, Florian .
DUKE MATHEMATICAL JOURNAL, 2015, 164 (07) :1271-1352
[4]  
CARTER RW, 1976, P LOND MATH SOC, V32, P347
[5]  
Cartier P., 1990, Progr. Math., V87, P249
[6]  
Colmez P, 2010, ASTERISQUE, P281
[7]  
Colmez P, 2010, ASTERISQUE, P61
[8]  
Emerton M., 2008, PREPRINT
[9]  
Grosse-Klönne E, 2014, MUENSTER J MATH, V7, P115
[10]   p-torsion coefficient systems for SL2(Qp) and GL2(Qp) [J].
Grosse-Kloenne, Elmar .
JOURNAL OF ALGEBRA, 2011, 342 (01) :97-110