Biharmonic maps and biharmonic submanifolds with small curvature integral

被引:1
作者
Seo, Keomkyo [1 ,2 ]
Yun, Gabjin [3 ,4 ]
机构
[1] Sookmyung Womens Univ, Dept Math, Cheongpa-ro 47-gil 100, Seoul 04310, South Korea
[2] Sookmyung Womens Univ, Res Inst Nat Sci, Cheongpa ro 47 gil 100, Seoul 04310, South Korea
[3] Myongji Univ, Dept Math, Myongji ro 116, Yongin 17058, South Korea
[4] Myongji Univ, Nat Sci Res Inst, Myongji ro 116, Yongin 17058, South Korea
基金
新加坡国家研究基金会;
关键词
Biharmonic maps; Biharmonic submanifolds; Generalized Chen's conjecture; Einstein manifolds; Fundamental tone; Locally conformally flat; CHENS CONJECTURE; HYPERSURFACES; MANIFOLD;
D O I
10.1016/j.geomphys.2022.104555
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study biharmonic maps and biharmonic submanifolds with small curvature integral. Let phi : (M-n, g) -> (N-m, h) be a biharmonic map from a complete noncompact Riemannian manifold (M-n, g) into a Riemannian manifold (N-m, h) satisfying that the L-2-norm of the tension field of the map is finite. If the domain manifold of the map satisfies a Sobolev inequality and the L-n/2-norm of the sectional curvature on the image phi(M) is sufficiently small, then we are able to prove the harmonicity of the biharmonic map. It turns out that the fundamental tone of M is sufficiently large, then such a biharmonic map phi must be harmonic. In case where the map is an isometric immersion, we prove that if M satisfies a Sobolev inequality, then M must be minimal under the assumption that the L-n/2-norm of the Ricci curvature on M is sufficiently small. Moreover it is shown that if the fundamental tone of a biharmonic submanifold is sufficiently big, then it is minimal. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 30 条
[1]   Biharmonic PNMC submanifolds in spheres [J].
Balmus, Adina ;
Montaldo, Stefano ;
Oniciuc, Cezar .
ARKIV FOR MATEMATIK, 2013, 51 (02) :197-221
[2]   Classification results and new examples of proper biharmonic submanifolds in spheres [J].
Balmus, Adina ;
Montaldo, Stefano ;
Oniciuc, Cezar .
NOTE DI MATEMATICA, 2008, 28 :49-61
[3]  
Besse A.L., 1987, EINSTEIN MANIFOLDS
[4]   Biharmonic submanifolds of S3 [J].
Caddeo, R ;
Montaldo, S ;
Oniciuc, C .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (08) :867-876
[5]   Biharmonic submanifolds in spheres [J].
Caddeo, R ;
Montaldo, S ;
Oniciuc, C .
ISRAEL JOURNAL OF MATHEMATICS, 2002, 130 (1) :109-123
[6]  
Carron G, 1995, SEMINAIRE THEORIE SP, V13, P63
[7]  
Chen B.Y., 1991, Soochow J. Math, V17, P169
[8]  
Defever F, 1998, MATH NACHR, V196, P61
[9]   p-Fundamental tone estimates of submanifolds with bounded mean curvature [J].
Evangelista, Israel ;
Seo, Keomkyo .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2017, 52 (03) :269-287
[10]   On Chen's biharmonic conjecture for hypersurfaces in R5 [J].
Fu, Yu ;
Hong, Min-Chun ;
Zhan, Xin .
ADVANCES IN MATHEMATICS, 2021, 383