Supplementation With Lycium barbarum Polysaccharides Reduce Obesity in High-Fat Diet-Fed Mice by Modulation of Gut Microbiota

被引:29
|
作者
Yang, Mei [1 ]
Yin, Yexin [1 ]
Wang, Fang [1 ]
Zhang, Haihan [1 ]
Ma, Xiaokang [1 ]
Yin, Yulong [1 ,2 ]
Tan, Bie [1 ]
Chen, Jiashun [1 ,2 ]
机构
[1] Hunan Agr Univ, Coll Anim Sci & Technol, Anim Nutr Genome & Germplasm Innovat Res Ctr, Changsha, Peoples R China
[2] Inst Subtrop Agr, CAS Key Lab Agroecol Proc Subtrop Reg, Changsha, Peoples R China
关键词
Lycium barbarum polysaccharides; high-fat diet; gut microbiota; lipid metabolism; obesity; MARINE POLYSACCHARIDES; METABOLIC SYNDROME; DYSBIOSIS; WEIGHT; FERMENTATION; ACCUMULATION; FRUIT; RATS; OIL;
D O I
10.3389/fmicb.2021.719967
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Lycium barbarum polysaccharides (LBPs) have been proved to prevent obesity and modulate gut microbiota. However, the underlying mechanisms of LBPs' regulating lipid metabolism remain entirely unclear. Therefore, the purpose of this study was to determine whether LBPs are able to modulate the gut microbiota to prevent obesity. The results showed that oral administration of LBPs alleviated dyslipidemia by decreasing the serum levels of total triglycerides, total cholesterol, and low-density lipoprotein-cholesterol and elevating the high-density lipoprotein cholesterol in obese mice. Furthermore, LBP treatment decreased the number and size of adipocytes in epididymal adipose tissues and downregulated the expression of adipogenesis-related genes, including acetyl-CoA carboxylase 1, fatty acid synthase, stearoyl-CoA desaturase 1, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor gamma, and CCAAT/enhancer-binding protein alpha. 16S rRNA gene sequencing analysis showed that LBPs increased the diversity of bacteria, reduced the Firmicutes/Bacteroidetes ratio, and improved the gut dysbiosis induced by a high-fat diet; for example, LBPs increased the production of short-chain fatty acid-producing bacteria Lacticigenium, Lachnospiraceae_NK4A136_group, and Butyricicoccus. LBPs treatment also increased the content of fecal short-chain fatty acids, including butyric acid. These findings illustrate that LBPs might be developed as a potential prebiotic to improve lipid metabolism and intestinal diseases.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Lactobacillus plantarum Alleviates Obesity by Altering the Composition of the Gut Microbiota in High-Fat Diet-Fed Mice
    Ma, Yong
    Fei, Yanquan
    Han, Xuebing
    Liu, Gang
    Fang, Jun
    FRONTIERS IN NUTRITION, 2022, 9
  • [22] Effect of mushroom polysaccharides fromPleurotus eryngiion obesity and gut microbiota in mice fed a high-fat diet
    Nakahara, Daiki
    Nan, Cui
    Mori, Koichiro
    Hanayama, Motoki
    Kikuchi, Haruhisa
    Hirai, Shizuka
    Egashira, Yukari
    EUROPEAN JOURNAL OF NUTRITION, 2020, 59 (07) : 3231 - 3244
  • [23] Undaria pinnatifidaimproves obesity-related outcomes in association with gut microbiota and metabolomics modulation in high-fat diet-fed mice
    Li, Lili
    Wang, Yuting
    Yuan, Jingyi
    Liu, Zhengyi
    Ye, Changqing
    Qin, Song
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2020, 104 (23) : 10217 - 10231
  • [24] Nuciferine modulates the gut microbiota and prevents obesity in high-fat diet-fed rats
    Yu Wang
    Weifan Yao
    Bo Li
    Shiyun Qian
    Binbin Wei
    Shiqiang Gong
    Jing Wang
    Mingyan Liu
    Minjie Wei
    Experimental & Molecular Medicine, 2020, 52 : 1959 - 1975
  • [25] Nuciferine modulates the gut microbiota and prevents obesity in high-fat diet-fed rats
    Wang, Yu
    Yao, Weifan
    Li, Bo
    Qian, Shiyun
    Wei, Binbin
    Gong, Shiqiang
    Wang, Jing
    Liu, Mingyan
    Wei, Minjie
    EXPERIMENTAL AND MOLECULAR MEDICINE, 2020, 52 (12): : 1959 - 1975
  • [26] Lycium barbarum polysaccharide attenuates myocardial injury in high-fat diet-fed mice through manipulating the gut microbiome and fecal metabolome
    Zhang, Zheng
    Liu, Hao
    Yu, Bin
    Tao, Haiteng
    Li, Jianpeng
    Wu, Zhengzong
    Liu, Guimei
    Yuan, Chao
    Guo, Li
    Cui, Bo
    FOOD RESEARCH INTERNATIONAL, 2020, 138
  • [27] Niacin Improves Gut Function and Microbiota Composition in High-Fat Diet-Fed Mice
    Fang, Han
    Graff, Emily C.
    Li, Zhuoyue
    Globa, Ludmila
    Sorokulova, Iryna B.
    Judd, Robert L.
    DIABETES, 2017, 66 : LB82 - LB83
  • [28] Tibetan highland barley fiber improves obesity and regulates gut microbiota in high-fat diet-fed mice
    Gan, Linyao
    Han, Jing
    Li, Chenyao
    Tang, Jing
    Wang, Xuebing
    Ma, Yue
    Chen, Yefu
    Xiao, Dongguang
    Guo, Xuewu
    FOOD BIOSCIENCE, 2023, 53
  • [29] Effect of κ-carrageenan on glucolipid metabolism and gut microbiota in high-fat diet-fed mice
    Wang, Qiong
    Zhang, Ling
    He, Yalun
    Zeng, Lirong
    He, Juncheng
    Yang, Yang
    Zhang, Tongcun
    JOURNAL OF FUNCTIONAL FOODS, 2021, 86
  • [30] Effect of Berberine on Atherosclerosis and Gut Microbiota Modulation and Their Correlation in High-Fat Diet-Fed ApoE-/- Mice
    Wu, Min
    Yang, Shengjie
    Wang, Songzi
    Cao, Yu
    Zhao, Ran
    Li, Xinye
    Xing, Yanwei
    Liu, Longtao
    FRONTIERS IN PHARMACOLOGY, 2020, 11