Modified Calcium Manganites for Thermochemical Energy Storage Applications

被引:11
作者
Miller, James E. [1 ,2 ,3 ]
Babiniec, Sean M. [4 ]
Coker, Eric N. [5 ]
Loutzenhiser, Peter G. [6 ]
Stechel, Ellen B. [7 ]
Ambrosini, Andrea [8 ]
机构
[1] Arizona State Univ, LightWorks, Tempe, AZ 85281 USA
[2] Arizona State Univ, Sch Sustainabil, Tempe, AZ 85281 USA
[3] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[4] Sandia Natl Labs, Thermal Sci & Engn Dept, POB 5800, Albuquerque, NM 87185 USA
[5] Sandia Natl Labs, Adv Mat Lab, POB 5800, Albuquerque, NM 87185 USA
[6] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[7] Arizona State Univ, Sch Mol Sci, Tempe, AZ USA
[8] Sandia Natl Labs, Concentrating Solar Technol, POB 5800, Albuquerque, NM 87185 USA
关键词
thermochemical energy storage; metal oxides; mixed ionic electronic conductor; MIEC; calcium manganite CaMnO3; concentrating solar power (CSP); compound energy formalism; HIGH-TEMPERATURE; METAL-OXIDES; REDOX CYCLES; HEAT-STORAGE; PERFORMANCE; SYSTEMS; NONSTOICHIOMETRY; PEROVSKITES; PARTICLES; PURE;
D O I
10.3389/fenrg.2022.774099
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
CaAl0.2Mn0.8O3-delta (CAM28) and CaTi0.2Mn0.8O3-delta (CTM28) are perovskite metal oxides developed for high-temperature thermochemical energy storage (TCES) applications, e.g., in support of air Brayton power generation. Previous reports for these compounds focus on the equilibrium non-stoichiometry (delta) as a function of temperature and oxygen partial pressure (pO(2)) and the endotherm (or exotherm) accompanying changes in delta resulting from thermal reduction (or re-oxidation). Herein, we report results for elemental substitution and doping (Al, Co, Fe, La, Sr, Ti, Y, Zn, and Zr) of calcium manganites (CM) that establish the preference for CAM28 and CTM28. Techniques employed include conventional (screening and equilibrium) and ballistically heated multi-cycle thermogravimetric analysis (TGA), conventional and high temperature (in-situ) X-ray diffraction (XRD), and differential scanning calorimetry (DSC). Forward-looking results for A-site Y-doped materials, e.g., Ca0.9Y0.1MnO3-delta (CYM910), establish a route to increasing the reduction enthalpy relative to CAM28 and CTM28, albeit at the expense of increased reduction temperatures and raw materials costs. A thermodynamic model presented for CAM28, but extendable to related materials, provides values for the reaction enthalpy and extent of reduction as a function of temperature and oxygen partial pressure for use in design efforts. Taken as a whole, the results support the choice of Al-doped CaMnO3-delta as a low-cost material for TCES in a high temperature air Brayton application, but point the way to achieving higher stored energy densities that could lead to overall cost savings.
引用
收藏
页数:18
相关论文
共 56 条
[1]   Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 1: Testing of cobalt oxide-based powders [J].
Agrafiotis, Christos ;
Roeb, Martin ;
Schmuecker, Martin ;
Sattler, Christian .
SOLAR ENERGY, 2014, 102 :189-211
[2]   Evaluating thermodynamic performance limits of thermochemical energy storage subsystems using reactive perovskite oxide particles for concentrating solar power [J].
Albrecht, Kevin J. ;
Jackson, Gregory S. ;
Braun, Robert J. .
SOLAR ENERGY, 2018, 167 :179-193
[3]   A review of solar thermal energy storage in beds of particles: Packed and fluidized beds [J].
Almendros-Ibanez, J. A. ;
Fernandez-Torrijos, M. ;
Diaz-Heras, M. ;
Belmonte, J. F. ;
Sobrino, C. .
SOLAR ENERGY, 2019, 192 :193-237
[4]   Recent Advances in Thermochemical Energy Storage via Solid-Gas Reversible Reactions at High Temperature [J].
Andre, Laurie ;
Abanades, Stephane .
ENERGIES, 2020, 13 (22)
[5]   ABO3 (A = La, Ba, Sr, K; B = Co, Mn, Fe) Perovskites for Thermochemical Energy Storage [J].
Babiniec, Sean M. ;
Coker, Eric N. ;
Ambrosini, Andrea ;
Miller, James E. .
SOLARPACES 2015: INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS, 2016, 1734
[6]   Doped calcium manganites for advanced high-temperature thermochemical energy storage [J].
Babiniec, Sean M. ;
Coker, Eric N. ;
Miller, James E. ;
Ambrosini, Andrea .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (02) :280-284
[7]   Investigation of LaxSr1-xCoyM1-yO3-δ (M = Mn, Fe) perovskite materials as thermochemical energy storage media [J].
Babiniec, Sean M. ;
Coker, Eric N. ;
Miller, James E. ;
Ambrosini, Andrea .
SOLAR ENERGY, 2015, 118 :451-459
[8]  
Babiniec Sean M., P ASME 10 INT C ENER
[9]   Entropy of oxidation and redox energetics of CaMnO3-δ [J].
Bakken, E ;
Boerio-Goates, J ;
Grande, T ;
Hovde, B ;
Norby, T ;
Rormark, L ;
Stevens, R ;
Stolen, S .
SOLID STATE IONICS, 2005, 176 (29-30) :2261-2267
[10]   Nonstoichiometry and reductive decomposition of CaMnO3-δ [J].
Bakken, E ;
Norby, T ;
Stolen, S .
SOLID STATE IONICS, 2005, 176 (1-2) :217-223