Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models

被引:196
|
作者
Wang, Jianzhou [1 ]
Song, Yiliao [1 ,2 ]
Liu, Feng [1 ,2 ]
Hou, Ru [2 ]
机构
[1] Dongbei Univ Finance & Econ, Sch Stat, Dalian 116025, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-step wind speed forecast; Validation cuckoo search; EEMD; Lazy learning; Robustness; ARTIFICIAL NEURAL-NETWORKS; TIME-SERIES PREDICTION; LONG-TERM PREDICTION; UNIT COMMITMENT; ENERGY; REGRESSION; SELECTION; DECOMPOSITION; METHODOLOGY; STRATEGY;
D O I
10.1016/j.rser.2016.01.114
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wind energy, which is clean, inexhaustible and free, has been used to mitigate the crisis of conventional resource depletion. However, wind power is difficult to implement on a large scale because the volatility of wind hinders the prediction of steady and accurate wind power or speed values, especially for multi-step-ahead and long horizon cases. Multi-step-ahead prediction of wind speed is challenging and can be realized by the Weather Research and Forecasting Model (WRF). However, a large error in wind speed will occur due to inaccurate predictions at the beginning of the synoptic process in WRF. Multi-step wind speed predictions using statistical and machine learning methods have rarely been studied because greater numbers of forecasting steps correspond to lower accuracy. In this study, a detailed review of wind speed forecasting is presented, including the application of wind energy, time horizons for wind speed prediction and wind speed forecasting methods. This paper presents eight strategies for realizing multi-step wind speed forecasting with machine-learning methods and compares 48 different hybrid models based on these eight strategies. The results show good consistency among the different wind farms, with COMB-DIRMO models generally having a higher prediction accuracy than the other strategies. Thus, this paper introduced three methods of combining these COMB-DIRMO models, an analysis of their performance improvements over the original models and a comparison among them. Valid experimental simulations demonstrate that ALL-DDVC, one combination of the COMB-DIRMO models, is a practical, effective and robust model for multi-step-ahead wind speed forecasting. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:960 / 981
页数:22
相关论文
共 50 条
  • [1] Wind speed and wind power forecasting models
    Lydia, M.
    Kumar, G. Edwin Prem
    Akash, R.
    ENERGY & ENVIRONMENT, 2024,
  • [2] Comparative models for multi-step ahead wind speed forecasting applied for expected wind turbine power output prediction
    Kenmoe, Germaine Djuidje
    Fotso, Hervice Romeo Fogno
    Kaze, Claude Vidal Aloyem
    WIND ENGINEERING, 2022, 46 (03) : 780 - 795
  • [3] An improved Wavenet network for multi-step-ahead wind energy forecasting
    Wang, Yun
    Chen, Tuo
    Zhou, Shengchao
    Zhang, Fan
    Zou, Ruming
    Hu, Qinghua
    ENERGY CONVERSION AND MANAGEMENT, 2023, 278
  • [4] Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks
    Li, Dan
    Jiang, Fuxin
    Chen, Min
    Qian, Tao
    ENERGY, 2022, 238
  • [5] A Neural Network Approach to Multi-Step-Ahead, Short-Term Wind Speed Forecasting
    Cardenas-Barrera, Julian L.
    Meng, Julian
    Castillo-Guerra, Eduardo
    Chang, Liuchen
    2013 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2013), VOL 2, 2013, : 243 - 248
  • [6] Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices
    Xiong, Tao
    Bao, Yukun
    Hu, Zhongyi
    ENERGY ECONOMICS, 2013, 40 : 405 - 415
  • [7] Statistical models for multi-step-ahead forecasting of fine particulate matter in urban areas
    Ahani, Ida Kalate
    Salari, Majid
    Shadman, Alireza
    ATMOSPHERIC POLLUTION RESEARCH, 2019, 10 (03) : 689 - 700
  • [8] A novel hybrid model for multi-step-ahead forecasting of wind speed based on univariate data feature enhancement
    Wang, Yaqi
    Zhao, Xiaomeng
    Li, Zheng
    Zhu, Wenbo
    Gui, Renzhou
    ENERGY, 2024, 312
  • [9] Stochastic models for wind speed forecasting
    Bivona, S.
    Bonanno, G.
    Burlon, R.
    Gurrera, D.
    Leone, C.
    ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (02) : 1157 - 1165
  • [10] Multi-step ahead wind power forecasting for Ireland using an ensemble of VMD-ELM models
    Gonzalez-Sopena, Juan Manuel
    Pakrashi, Vikram
    Ghosh, Bidisha
    2020 31ST IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2020, : 187 - 191