Unsupervised Feature Selection in Cardiac Arrhythmias Analysis

被引:2
作者
Rodriguez-Sotelo, J. L. [1 ]
Cuesta-Frau, D. [2 ]
Peluffo-Ordonez, D. [1 ]
Castellanos-Dominguez, G. [1 ]
机构
[1] Univ Nacl Colombia, Fac Elect & Elect Engn, Bogota, Colombia
[2] Polytech Univ, Inst Informat Technol, Alcala De Henares, Spain
来源
2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20 | 2009年
关键词
ECG; CLASSIFICATION; MORPHOLOGY;
D O I
10.1109/IEMBS.2009.5335284
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The problem of detecting clinical events related to cardiac arrhythmias in long term electrocardiograms is a difficult one due to the large amount of irrelevant information that hides such events. This problem has been addressed in the literature by means of clustering or classification algorithms that create data partitions according to a cost function based on heartbeat features dissimilarity measures. However, studies about the type or number of heartbeat features is lacking. Usually, the feature sets used are relevant but redundant, which degrades algorithm performance. This paper describes a method for automatic selection of heartbeat features. This method is assessed using real signals from the MIT database and common features used in previous works.
引用
收藏
页码:2571 / 2574
页数:4
相关论文
共 18 条
  • [1] *AAMI, 1999, EC571998R2003 ANSIAA
  • [2] Bishop Christopher M, 1995, Neural networks for pattern recognition
  • [3] Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network
    Ceylan, Rahime
    Ozbay, Yuksel
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2007, 33 (02) : 286 - 295
  • [4] Unsupervised classification of ventricular extrasystoles using bounded clustering algorithms and morphology matching
    Cuesta-Frau, David
    Biagetti, Marcelo O.
    Quinteiro, Ricardo A.
    Mico-Tormos, Pau
    Aboy, Mateo
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2007, 45 (03) : 229 - 239
  • [5] Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures:: A pilot study
    Cvetkovic, Dean
    Ubeyli, Elif Derya
    Cosic, Irena
    [J]. DIGITAL SIGNAL PROCESSING, 2008, 18 (05) : 861 - 874
  • [6] Automatic classification of heartbeats using ECG morphology and heartbeat interval features
    de Chazal, P
    O'Dwyer, M
    Reilly, RB
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (07) : 1196 - 1206
  • [7] J-MEANS: a new local search heuristic for minimum sum of squares clustering
    Hansen, P
    Mladenovic, N
    [J]. PATTERN RECOGNITION, 2001, 34 (02) : 405 - 413
  • [8] HUGHES N, 2004, SEMISUPERVISED LEARN, V1, P434
  • [9] Clustering ECG complexes using Hermite functions and self-organizing maps
    Lagerholm, M
    Peterson, C
    Braccini, G
    Edenbrandt, L
    Sörnmo, L
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2000, 47 (07) : 838 - 848
  • [10] Unsupervised classification of atrial heartbeats using a prematurity index and wave morphology features
    Luis Rodriguez-Sotelo, Jose
    Cuesta-Frau, D.
    Castellanos-Dominguez, G.
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2009, 47 (07) : 731 - 741