Circadian firing-rate rhythms and light responses of rat habenular nucleus neurons in vivo and in vitro

被引:143
作者
Zhao, H
Rusak, B [1 ]
机构
[1] Dalhousie Univ, Dept Psychol, Halifax, NS B3H 4J1, Canada
[2] Jilin Univ, Sch Basic Med Sci, Dept Physiol, Changchun 130021, Peoples R China
[3] Dalhousie Univ, Dept Psychiat, Halifax, NS B3H 2E2, Canada
[4] Dalhousie Univ, Dept Pharmacol, Halifax, NS B3H 2E2, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
circadian rhythm; electrophysiology; photic; entrainment; suprachiasmatic nucleus;
D O I
10.1016/j.neuroscience.2005.01.012
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The suprachiasmatic nuclei of the anterior hypothalamus serve as the principal pacemaker of the mammalian circadian system. Among its efferent targets are the habenular nucleus (Hb), especially the lateral Hb (LHb), which plays an important role in conveying input from the limbic forebrain to midbrain structures. We recorded extracellularly from single neurons in the LHb and medial Hb (MHb), both in vivo and using an in vitro slice preparation, to assess their responses to retinal illumination and the rhythmicity of their firing rates. Of cells recorded in the LHb, 42% were tonically activated or suppressed by retinal illumination, while significantly fewer cells recorded in the MHb responded to retinal illumination (19%). Of photically responsive cells, 68% in the LHb were activated and the remainder suppressed, while only 25% of those recorded in the MHb were activated. Cells in both the LHb and MHb showed higher baseline firing rates during the day than during the night in vivo, while photic responses were of significantly larger amplitude among LHb cells during the projected night than during the projected day. LHb cells recorded in vitro maintained their rhythmicity for two circathan cycles, but MHb cells did not show a rhythm in vitro. The habenula may play a role in linking circadian and motivational systems and may contribute to photic regulation of these systems, as well as to the rhythmicity of their function. (c) 2005 Published by Elsevier Ltd on behalf of IBRO.
引用
收藏
页码:519 / 528
页数:10
相关论文
共 95 条
[1]   Circadian rhythms in isolated brain regions [J].
Abe, M ;
Herzog, ED ;
Yamazaki, S ;
Straume, M ;
Tei, H ;
Sakaki, Y ;
Menaker, M ;
Block, GD .
JOURNAL OF NEUROSCIENCE, 2002, 22 (01) :350-356
[2]   Oscillating on borrowed time: Diffusible signals from immortalized suprachiasmatic nucleus cells regulate circadian rhythmicity in cultured fibroblasts [J].
Allen, G ;
Rappe, J ;
Earnest, DJ ;
Cassone, VM .
JOURNAL OF NEUROSCIENCE, 2001, 21 (20) :7937-7943
[3]   The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress [J].
Amat, J ;
Sparks, PD ;
Matus-Amat, P ;
Griggs, J ;
Watkins, LR ;
Maier, SF .
BRAIN RESEARCH, 2001, 917 (01) :118-126
[4]   A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis [J].
Amir, S ;
Lamont, EW ;
Robinson, B ;
Stewart, J .
JOURNAL OF NEUROSCIENCE, 2004, 24 (04) :781-790
[5]  
Andres KH, 1999, J COMP NEUROL, V407, P130, DOI 10.1002/(SICI)1096-9861(19990428)407:1<130::AID-CNE10>3.0.CO
[6]  
2-8
[7]   Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats [J].
Asai, M ;
Yoshinobu, Y ;
Kaneko, S ;
Mori, A ;
Nikaido, T ;
Moriya, T ;
Akiyama, M ;
Shibata, S .
JOURNAL OF NEUROSCIENCE RESEARCH, 2001, 66 (06) :1133-1139
[8]   A neural circuit for circadian regulation of arousal [J].
Aston-Jones, G ;
Chen, S ;
Zhu, Y ;
Oshinsky, ML .
NATURE NEUROSCIENCE, 2001, 4 (07) :732-738
[9]   A serum shock induces circadian gene expression in mammalian tissue culture cells [J].
Balsalobre, A ;
Damiola, F ;
Schibler, U .
CELL, 1998, 93 (06) :929-937
[10]   AFFERENTS TO THE MEDIAN RAPHE NUCLEUS OF THE RAT - RETROGRADE CHOLERA-TOXIN AND WHEAT-GERM CONJUGATED HORSERADISH-PEROXIDASE TRACING, AND SELECTIVE D-[H-3]ASPARTATE LABELING OF POSSIBLE EXCITATORY AMINO-ACID INPUTS [J].
BEHZADI, G ;
KALEN, P ;
PARVOPASSU, F ;
WIKLUND, L .
NEUROSCIENCE, 1990, 37 (01) :77-100