The well-distributed volumetric heat source model for numerical simulation of wire arc additive manufacturing process

被引:46
作者
Ding, Donghong [1 ]
Zhang, Shimin [1 ]
Lu, Qinghua [1 ]
Pan, Zengxi [2 ]
Li, Huijun [2 ]
Wang, Kai [1 ]
机构
[1] Foshan Univ, Sch Mechatron Engn & Automat, Foshan 528225, Guangdong, Peoples R China
[2] Univ Wollongong, Sch Mech Mat & Mechatron Engn, Fac Engn & Informat Sci, Northfield Ave, Wollongong, NSW 2500, Australia
基金
中国国家自然科学基金;
关键词
Wire arc additive manufacturing; Finite element; Heat source model; Thermal analysis; Computational efficiency; FINITE-ELEMENT MODEL; RESIDUAL-STRESSES; LASER; DEPOSITION; TEMPERATURE; MECHANISMS; COMPONENTS; PHYSICS; PART;
D O I
10.1016/j.mtcomm.2021.102430
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wire arc additive manufacturing (WAAM) is a promising alternative to laser-powder based additive manufacturing for fabricating large metallic components due to its high productivity and low cost. The high heat input of the arc welding process causes significant thermal stresses resulting in large distortion of the components. Finite element methods are widely used to analysis arc welding and additive manufacturing process, while the commonly used Gaussian or Double ellipsoid volumetric heat source model requires a large number of mesh points suffering from computational expensive and time consuming. This paper describes the well-distributed volumetric heat source model for numerical simulation of wire arc additive manufacturing process on large components. The proposed well-distributed heat source model is insensitive to mesh, showing a significant advantage with respect to the computational time. The simulated temperature history and distribution are verified by comparison with the experimental results from thermocouples and a high-temperature thermal imaging camera.
引用
收藏
页数:11
相关论文
共 43 条
[1]   Numerical simulation to study the effect of tack welds and root gap on welding deformations and residual stresses of a pipe-flange joint [J].
Abid, M ;
Siddique, M .
INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2005, 82 (11) :860-871
[2]   A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process [J].
Alimardani, Masoud ;
Toyserkani, Ehsan ;
Huissoon, Jan P. .
OPTICS AND LASERS IN ENGINEERING, 2007, 45 (12) :1115-1130
[3]   Invited review article: Metal-additive manufacturing-Modeling strategies for application-optimized designs [J].
Bandyopadhyay, Amit ;
Traxel, Kellen D. .
ADDITIVE MANUFACTURING, 2018, 22 :758-774
[4]   Mechanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire [J].
Brandl, Erhard ;
Palm, Frank ;
Michailov, Vesselin ;
Viehweger, Bernd ;
Leyens, Christoph .
MATERIALS & DESIGN, 2011, 32 (10) :4665-4675
[5]   Selective laser melting finite element modeling: Validation with high-speed imaging and lack of fusion defects prediction [J].
Bruna-Rosso, Claire ;
Demir, Ali Gokhan ;
Previtali, Barbara .
MATERIALS & DESIGN, 2018, 156 :143-153
[6]   Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting [J].
Buchbinder, Damien ;
Meiners, Wilhelm ;
Pirch, Norbert ;
Wissenbach, Konrad ;
Schrage, Johannes .
JOURNAL OF LASER APPLICATIONS, 2014, 26 (01)
[7]   Finite element modeling of multi-pass welding and shaped metal deposition processes [J].
Chiumenti, Michele ;
Cervera, Miguel ;
Salmi, Alessandro ;
Agelet de Saracibar, Carlos ;
Dialami, Narges ;
Matsui, Kazumi .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (37-40) :2343-2359
[8]   Distortion minimization of laser-processed components through control of laser scanning patterns [J].
Dai, K ;
Shaw, L .
RAPID PROTOTYPING JOURNAL, 2002, 8 (05) :270-276
[9]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[10]   Thermomechanical Modeling of Additive Manufacturing Large Parts [J].
Denlinger, Erik R. ;
Irwin, Jeff ;
Michaleris, Pan .
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (06)