1 To better understand the anticancer activity of Levamisole (LMS), which serves as an adjuvant in colon cancer therapy in combination with 5-Fluorouracil, this study analyses LMS' ability to induce apoptosis and growth arrest in cultured human micro- and macrovascular endothelial cells (ECs) and fibroblasts. 2 Cells exposed (24 h) to Levamisole (range: 0.5-2 mmol l(-1)) alone or in combination with antioxidants (10 mmol l(-1) glutathione or 5 mmol l(-1) N-Acetylcysteine or 0.1 mmol l(-1) Tocopherol) were evaluated for apoptosis (H-3-thymidine assays, in situ staining), mRNA/protein expression (Northern/Western blot), and proliferation (H-3-thymidine incorporation). 3 Levamisole dose-dependently increased apoptosis in ECs to 230% (HUVECs-human umbilical vein ECs), 525% (adult human venous ECs) and 600% (human uterine microvascular ECs) but not in fibroblasts compared to control cells (set as 100%). 4 Levamisole increased in ECs integrin-dependent matrix adhesion, inhibited proliferation (-70%), reduced expression of survival factors such as clusterin (-30%), endothelin-1 (-43%), bcl-2 (-34%), endothelial NO-synthase (-32%) and pRb (Retinoblastoma protein: -89%), and increased that of growth arrest/death signals such as p21 (+73%) and bak (+50%). 5 LMS (2 mmol l(-1))-induced apoptosis was inhibited by glutathione (-50%) and N-Acetylcysteine (-36%), which also counteracted reduction by Levamisole of pRb expression, suggesting reactive oxygen species and pRb play a role in these processes. 6 The ability of LMS to selectively induce apoptosis and growth arrest in endothelial cells potentially hints at vascular targeting to contribute to Levamisole's anticancer activity.