Trans-splicing enhances translational efficiency in C. elegans

被引:23
|
作者
Yang, Yu-Fei [1 ,2 ,3 ]
Zhang, Xiaoqing [1 ,2 ,3 ]
Ma, Xuehua [2 ,4 ]
Zhao, Taolan [1 ,2 ]
Sun, Qiushi [1 ,2 ,5 ]
Huan, Qing [1 ,2 ]
Wu, Shaohuan [1 ,2 ,3 ]
Du, Zhuo [4 ]
Qian, Wenfeng [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Plant Genom, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Inst Genet & Dev Biol, Key Lab Genet Network Biol, Beijing 100101, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Mol Dev Biol, Beijing 100701, Peoples R China
[5] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing Key Lab Traff Data Anal & Min, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
SYNONYMOUS CODON USAGE; GENOME-WIDE ANALYSIS; IN-VIVO TRANSLATION; CAENORHABDITIS-ELEGANS; PROTEIN EXPRESSION; GENE-EXPRESSION; MESSENGER-RNAS; SECONDARY STRUCTURE; FUNCTIONAL-ANALYSIS; GLOBAL ANALYSIS;
D O I
10.1101/gr.202150.115
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Translational efficiency is subject to extensive regulation. However, the factors influencing such regulation are poorly understood. In Caenorhabditis elegans, 62% of genes are trans-spliced to a specific spliced leader (SLI), which replaces part of the native 5' untranslated region (5' UTR). Given the pivotal role the 5' UTR plays in the regulation of translational efficiency, we hypothesized that SLI trans-splicing functions to regulate translational efficiency. With genome-wide analysis on Ribo-seq data, polysome profiling experiments, and CRISPR-Cas9-based genetic manipulation of trans-splicing sites, we found four lines of evidence in support of this hypothesis. First, SLI trans-spliced genes have higher translational efficiencies than non trans-spliced genes. Second, SLI trans-spliced genes have higher translational efficiencies than non-trans-spliced orthologous genes in other nematode species. Third, an SLI trans-spliced isoform has higher translational efficiency than the non-trans spliced isoform of the same gene. Fourth, deletion of trans-splicing sites of endogenous genes leads to reduced translational efficiency. Importantly, we demonstrated that SLI trans-splicing plays a key role in enhancing translational efficiencies of essential genes. We further discovered that SLI trans-splicing likely enhances translational efficiency by shortening the native 5' UTRs, hence reducing the presence of upstream start codons (uAUG) and weakening mRNA secondary structures. Taken together, our study elucidates the global function of trans-splicing in enhancing translational efficiency in nematodes, paving the way for further understanding the genomic mechanisms of translational regulation.
引用
收藏
页码:1525 / 1535
页数:11
相关论文
共 50 条
  • [41] Global regulatory features of alternative splicing across tissues and within the nervous system of C. elegans
    Koterniak, Bina
    Pilaka, Pallavi P.
    Gracida, Xicotencatl
    Schneider, Lisa-Marie
    Pritisanac, Iva
    Zhang, Yun
    Calarco, John A.
    GENOME RESEARCH, 2020, 30 (12) : 1766 - 1780
  • [42] Trans-splicing of the C-elegans let-7 primary transcript developmentally regulates let-7 microRNA biogenesis and let-7 family microRNA activity
    Nelson, Charles
    Ambros, Victor
    DEVELOPMENT, 2019, 146 (05):
  • [43] Transgenerational inheritance of sexual attractiveness via small RNAs enhances evolvability in C. elegans
    Toker, Itai Antoine
    Lev, Itamar
    Mor, Yael
    Gurevich, Yael
    Fisher, Doron
    Houri-Zeevi, Leah
    Antonova, Olga
    Doron, Hila
    Anava, Sarit
    Gingold, Hila
    Hadany, Lilach
    Shaham, Shai
    Rechavi, Oded
    DEVELOPMENTAL CELL, 2022, 57 (03) : 298 - +
  • [44] RNA Processing in C. elegans
    Morton, J. Jason
    Blumenthal, Thomas
    CAENORHABDITIS ELEGANS: MOLECULAR GENETICS AND DEVELOPMENT, SECOND EDITION, 2011, 106 : 187 - 217
  • [45] Expansion microscopy of C. elegans
    Yu, Chih-Chieh
    Barry, Nicholas C.
    Wassie, Asmamaw T.
    Sinha, Anubhav
    Bhattacharya, Abhishek
    Asano, Shoh
    Zhang, Chi
    Chen, Fei
    Hobert, Oliver
    Goodman, Miriam B.
    Haspel, Gal
    Boyden, Edward S.
    ELIFE, 2020, 9 : 1 - 78
  • [46] Modal Locomotion of C. elegans
    Mujika, A.
    Merino, S.
    Leskovsky, P.
    Epelde, G.
    Oyarzun, D.
    Otaduy, M. A.
    XXIX SPANISH COMPUTER GRAPHICS CONFERENCE (CEIG19), 2019, : 1 - 8
  • [47] C. elegans Embryonic Morphogenesis
    Vuong-Brender, Thanh T. K.
    Yang, Xinyi
    Labouesse, Michel
    ESSAYS ON DEVELOPMENTAL BIOLOGY, PT A, 2016, 116 : 597 - +
  • [48] Vitamin K2 Enhances Fat Degradation to Improve the Survival of C. elegans
    Qu, Zhi
    Zhang, Lu
    Huang, Wei
    Zheng, Shanqing
    FRONTIERS IN NUTRITION, 2022, 9
  • [49] Longevity, lipids and C. elegans
    Hulbert, A. J.
    AGING-US, 2011, 3 (02): : 81 - 82
  • [50] Mapping Mutations in C. elegans
    Lambie, Eric J.
    CAENORHABDITIS ELEGANS: MOLECULAR GENETICS AND DEVELOPMENT, SECOND EDITION, 2011, 106 : 3 - 22