Trans-splicing enhances translational efficiency in C. elegans

被引:23
|
作者
Yang, Yu-Fei [1 ,2 ,3 ]
Zhang, Xiaoqing [1 ,2 ,3 ]
Ma, Xuehua [2 ,4 ]
Zhao, Taolan [1 ,2 ]
Sun, Qiushi [1 ,2 ,5 ]
Huan, Qing [1 ,2 ]
Wu, Shaohuan [1 ,2 ,3 ]
Du, Zhuo [4 ]
Qian, Wenfeng [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Plant Genom, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Inst Genet & Dev Biol, Key Lab Genet Network Biol, Beijing 100101, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Mol Dev Biol, Beijing 100701, Peoples R China
[5] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing Key Lab Traff Data Anal & Min, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
SYNONYMOUS CODON USAGE; GENOME-WIDE ANALYSIS; IN-VIVO TRANSLATION; CAENORHABDITIS-ELEGANS; PROTEIN EXPRESSION; GENE-EXPRESSION; MESSENGER-RNAS; SECONDARY STRUCTURE; FUNCTIONAL-ANALYSIS; GLOBAL ANALYSIS;
D O I
10.1101/gr.202150.115
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Translational efficiency is subject to extensive regulation. However, the factors influencing such regulation are poorly understood. In Caenorhabditis elegans, 62% of genes are trans-spliced to a specific spliced leader (SLI), which replaces part of the native 5' untranslated region (5' UTR). Given the pivotal role the 5' UTR plays in the regulation of translational efficiency, we hypothesized that SLI trans-splicing functions to regulate translational efficiency. With genome-wide analysis on Ribo-seq data, polysome profiling experiments, and CRISPR-Cas9-based genetic manipulation of trans-splicing sites, we found four lines of evidence in support of this hypothesis. First, SLI trans-spliced genes have higher translational efficiencies than non trans-spliced genes. Second, SLI trans-spliced genes have higher translational efficiencies than non-trans-spliced orthologous genes in other nematode species. Third, an SLI trans-spliced isoform has higher translational efficiency than the non-trans spliced isoform of the same gene. Fourth, deletion of trans-splicing sites of endogenous genes leads to reduced translational efficiency. Importantly, we demonstrated that SLI trans-splicing plays a key role in enhancing translational efficiencies of essential genes. We further discovered that SLI trans-splicing likely enhances translational efficiency by shortening the native 5' UTRs, hence reducing the presence of upstream start codons (uAUG) and weakening mRNA secondary structures. Taken together, our study elucidates the global function of trans-splicing in enhancing translational efficiency in nematodes, paving the way for further understanding the genomic mechanisms of translational regulation.
引用
收藏
页码:1525 / 1535
页数:11
相关论文
共 50 条
  • [21] C. elegans Cell Cycle Analysis
    van den Heuvel, Sander
    Kipreos, Edward T.
    CAENORHABDITIS ELEGANS: CELL BIOLOGY AND PHYSIOLOGY, SECOND EDITION, 2012, 107 : 265 - 294
  • [22] Genomic and Transcriptomic Analysis Reveals Spliced Leader Trans-Splicing in Cryptomonads
    Roy, Scott William
    GENOME BIOLOGY AND EVOLUTION, 2017, 9 (03): : 468 - 473
  • [23] Trans-splicing as a novel method to rapidly produce antibody fusion proteins
    Iwasaki, Ryohei
    Kiuchi, Hiroki
    Ihara, Masaki
    Mori, Toshihiro
    Kawakami, Masayuki
    Ueda, Hiroshi
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2009, 384 (03) : 316 - 321
  • [24] Analysis of C-elegans muscle transcriptome using trans-splicing-based RNA tagging (SRT)
    Ma, Xiaopeng
    Zhan, Ge
    Sleumer, Monica C.
    Chen, Siyu
    Liu, Weihong
    Zhang, Michael Q.
    Liu, Xiao
    NUCLEIC ACIDS RESEARCH, 2016, 44 (21)
  • [25] Oogenesis in C. elegans
    Davis, Gregory M.
    Hipwell, Hayleigh
    Boag, Peter R.
    SEXUAL DEVELOPMENT, 2023, 17 (2-3) : 73 - 83
  • [26] The landscape of RNA polymerase II transcription initiation in C. elegans reveals promoter and enhancer architectures
    Chen, Ron A. -J.
    Down, Thomas A.
    Stempor, Przemyslaw
    Chen, Q. Brent
    Egelhofer, Thea A.
    Hillier, LaDeana W.
    Jeffers, Tess E.
    Ahringer, Julie
    GENOME RESEARCH, 2013, 23 (08) : 1339 - 1347
  • [27] Topoisomerase inhibitor amonafide enhances defense responses to promote longevity in C. elegans
    Hu, Iman Man
    Serna, Ana
    Everts, Stacia
    Gungordu, Lale
    Schomakers, Bauke V.
    Nollen, Ellen A. A.
    Gao, Arwen W.
    Houtkooper, Riekelt H.
    Janssens, Georges E.
    GEROSCIENCE, 2025,
  • [28] A simple method to dramatically increase C. elegans germline microinjection efficiency
    Gibney, Theresa, V
    Favichia, Michelle
    Latifi, Laila
    Medwig-Kinney, Taylor N.
    Matus, David Q.
    McIntyre, Daniel C.
    Arrigo, Angelo B.
    Branham, Kendall R.
    Bubrig, Louis T.
    Ghaddar, Abbas
    Jiranek, Juliana A.
    Liu, Kendra E.
    Marcucci, Charles G.
    Porter, Robert J.
    Pani, Ariel M.
    DEVELOPMENTAL BIOLOGY, 2023, 502 : 63 - 67
  • [29] C. elegans Detects Pathogen-Induced Translational Inhibition to Activate Immune Signaling
    Dunbar, Tiffany L.
    Yan, Zhi
    Balla, Keir M.
    Smelkinson, Margery G.
    Troemel, Emily R.
    CELL HOST & MICROBE, 2012, 11 (04) : 375 - 386
  • [30] Global remodeling of nucleosome positions in C. elegans
    Locke, George
    Haberman, Devorah
    Johnson, Steven M.
    Morozov, Alexandre V.
    BMC GENOMICS, 2013, 14