Sharp bounds for the Randic index of graphs with given minimum and maximum degree

被引:14
作者
Suil, O. [1 ]
Shi, Yongtang [2 ,3 ]
机构
[1] State Univ New York, Dept Appl Math & Stat, Incheon 21985, South Korea
[2] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Randic index; Maximum degree; Minimum degree; VARIABLE NEIGHBORHOOD SEARCH; EXTREMAL GRAPHS; CONNECTIVITY INDEX; CONJECTURES; DIAMETER;
D O I
10.1016/j.dam.2018.03.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Randic index of a graph G, written R(G), is the sum of 1/root d(u)d(v) over all edges uv in E(G). Let d and D be positive integers d < D. In this paper,(WT) prove that if G is a graph with minimum degree d and maximum degree D, then R(G) >= root dD/d+Dn; equality holds only when G is an n-vertex (d, D)-biregular. Furthermore, we show that if G is an n-vertex connected graph with minimum degree d and maximum degree D, then R(G) <= n/2 - Sigma(D-1)(i=d) 1/2 (1/root i - 1/root i+1)(2) : it is sharp for infinitely many n, and we characterize when equality holds in the bound. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:111 / 115
页数:5
相关论文
共 20 条
[11]  
Fajtlowicz S., 1987, WRITTEN WALL CONJECT
[12]   Sandwiching the (generalized) Randic index [J].
Knor, Martin ;
Luzar, Borut ;
Skrekovski, Riste .
DISCRETE APPLIED MATHEMATICS, 2015, 181 :160-166
[13]  
Li X., 2008, RES ED DEV, P57
[14]  
Li XL, 2008, MATCH-COMMUN MATH CO, V59, P127
[15]   On a relation between the Randic index and the chromatic number [J].
Li, Xueliang ;
Shi, Yongtang .
DISCRETE MATHEMATICS, 2010, 310 (17-18) :2448-2451
[16]   On the Randic index [J].
Liu, HQ ;
Lu, M ;
Tian, F .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (03) :345-354
[17]  
Ma YD, 2018, MATCH-COMMUN MATH CO, V80, P85
[18]   CHARACTERIZATION OF MOLECULAR BRANCHING [J].
RANDIC, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1975, 97 (23) :6609-6615
[19]   Note on two generalizations of the Randic index [J].
Shi, Yongtang .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 265 :1019-1025
[20]   The Randic index and the diameter of graphs [J].
Yang, Yiting ;
Lu, Linyuan .
DISCRETE MATHEMATICS, 2011, 311 (14) :1333-1343