Approximate optimal trajectory tracking for continuous-time nonlinear systems

被引:164
作者
Kamalapurkar, Rushikesh [1 ]
Dinh, Huyen [2 ]
Bhasin, Shubhendu [3 ]
Dixon, Warren E. [1 ]
机构
[1] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA
[2] Univ Transport & Commun, Dept Mech Engn, Hanoi, Vietnam
[3] Indian Inst Technol, Dept Elect Engn, Delhi, India
基金
美国国家科学基金会;
关键词
Time-varying systems; Optimal control; Adaptive control; Tracking applications; Actor-critic;
D O I
10.1016/j.automatica.2014.10.103
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Adaptive dynamic programming has been investigated and used as a method to approximately solve optimal regulation problems. However, the extension of this technique to optimal tracking problems for continuous-time nonlinear systems has remained a non-trivial open problem. The control development in this paper guarantees ultimately bounded tracking of a desired trajectory, while also ensuring that the enacted controller approximates the optimal controller.(C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:40 / 48
页数:9
相关论文
共 27 条
[1]  
Abu-Khalaf M, 2002, IEEE DECIS CONTR P, P943, DOI 10.1109/CDC.2002.1184630
[2]  
[Anonymous], 1998, Reinforcement Learning: An Introduction
[3]   Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation [J].
Beard, RW ;
Saridis, GN ;
Wen, JT .
AUTOMATICA, 1997, 33 (12) :2159-2177
[4]   A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems [J].
Bhasin, S. ;
Kamalapurkar, R. ;
Johnson, M. ;
Vamvoudakis, K. G. ;
Lewis, F. L. ;
Dixon, W. E. .
AUTOMATICA, 2013, 49 (01) :82-92
[5]  
Dierks T, 2010, P AMER CONTR CONF, P1568
[6]   Optimal Tracking Control of Affine Nonlinear Discrete-time Systems with Unknown Internal Dynamics [J].
Dierks, Travis ;
Jagannathan, S. .
PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, :6750-6755
[7]   Reinforcement learning in continuous time and space [J].
Doya, K .
NEURAL COMPUTATION, 2000, 12 (01) :219-245
[8]   UNIVERSAL APPROXIMATION OF AN UNKNOWN MAPPING AND ITS DERIVATIVES USING MULTILAYER FEEDFORWARD NETWORKS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1990, 3 (05) :551-560
[9]  
Ioannou P. A., 1996, Robust Adaptive Control
[10]   Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics [J].
Jiang, Yu ;
Jiang, Zhong-Ping .
AUTOMATICA, 2012, 48 (10) :2699-2704