Riccati equation, factorization method and shape invariance

被引:54
作者
Cariñena, JF [1 ]
Ramos, A [1 ]
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Fis Teor, E-50009 Zaragoza, Spain
关键词
D O I
10.1142/S0129055X00000502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The basic concepts of factorizable problems in one-dimensional Quantum Mechanics, as well as the theory of Shape Invariant potentials are reviewed. The relation of this last theory with a generalization of the classical Factorization Method presented by Infeld and Hull is analyzed in detail. By the use of some properties of the Riccati equation the solutions of Infeld and Hull are generalized in a simple way.
引用
收藏
页码:1279 / 1304
页数:26
相关论文
共 26 条
  • [1] [Anonymous], 1962, Introduction to Nonlinear and Differential Integral Equations
  • [2] Integrability of the Riccati equation from a group-theoretical viewpoint
    Cariñena, JF
    Ramos, A
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (12): : 1935 - 1951
  • [3] The nonlinear superposition principle and the Wei-Norman method
    Carinena, JF
    Marmo, G
    Nasarre, J
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1998, 13 (21): : 3601 - 3627
  • [4] Related operators and exact solutions of Schrodinger equations
    Carinena, JF
    Marmo, G
    Perelomov, AM
    Ranada, MF
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1998, 13 (28): : 4913 - 4929
  • [5] Shape-invariant potentials depending on n parameters transformed by translation
    Cariñena, JF
    Ramos, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (17): : 3467 - 3481
  • [6] CARINENA JF, IN PRESS ACTA APPL M
  • [7] RELATIONSHIP BETWEEN SUPERSYMMETRY AND SOLVABLE POTENTIALS
    COOPER, F
    GINOCCHIO, JN
    KHARE, A
    [J]. PHYSICAL REVIEW D, 1987, 36 (08): : 2458 - 2473
  • [8] Gendenshtein L. E., 1985, Soviet Physics - Uspekhi, V28, P645, DOI 10.1070/PU1985v028n08ABEH003882
  • [9] GENDENSHTEIN LE, 1983, JETP LETT+, V38, P356
  • [10] FACTORIZATION OF SYSTEMS OF DIFFERENTIAL-EQUATIONS
    HUMI, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (01) : 76 - 81