On the Hurwitz function for rational arguments

被引:24
作者
Adamchik, V. S. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Riemann zeta function; Hurwitz zeta function; multiple gamma function; stirling numbers; Bernoulli numbers; Euler numbers; Glaisher's numbers; derivatives of the cotangent;
D O I
10.1016/j.amc.2006.08.096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using functional properties of the Hurwitz zeta function and symbolic derivatives of the trigonometric functions, the function zeta(2n + l,p/q) is expressed in several ways in terms of other mathematical functions and numbers, including in particular the Glaisher numbers. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 17 条
  • [1] The multiple gamma function and its application to computation of series
    Adamchik, VS
    [J]. RAMANUJAN JOURNAL, 2005, 9 (03) : 271 - 288
  • [2] Symbolic and numeric computations of the Barnes function
    Adamchik, VS
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2004, 157 (03) : 181 - 190
  • [3] [Anonymous], SERIES ASSOCIATED ZE
  • [4] Apostol TM., 1998, INTRO ANAL NUMBER TH
  • [5] Bateman H., 1953, HIGHER TRANSCENDENTA, V1
  • [6] Multiple Gamma and related functions
    Choi, J
    Srivastava, HM
    Adamchik, VS
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2003, 134 (2-3) : 515 - 533
  • [7] Fletcher A., 1962, INDEX MATH TABLES, V1
  • [8] GLAISHER J, 1999, P LOND MATH SOC, V31, P216
  • [9] Glaisher J. W. L., 1877, Mess. Math. (2), VVII, P43
  • [10] Glaisher JWL., 1894, Messenger Math, V23, P145