Upper bound on angular momentum transport in Taylor-Couette flow

被引:6
|
作者
Ding, Zijing [1 ]
Marensi, Elena [2 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Univ Sheffield, Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
ENERGY-DISSIPATION; VARIATIONAL BOUNDS; INCOMPRESSIBLE FLOWS; HEAT-TRANSPORT; TORQUE; CONSTANTIN;
D O I
10.1103/PhysRevE.100.063109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the upper bound on angular momentum transport in Taylor-Couette flow theoretically and numerically by a one-dimensional background field method. The flow is bounded between a rotating inner cylinder of radius R-i and a fixed outer cylinder of radius R-o. A variational problem is formulated and solved by a pseudo-time-stepping method up to a Taylor number Ta = 10(9). The angular momentum transport, characterized by a Nusselt number Nu, is bounded by Nu <= cTa(1/2), where the prefactor c depends on the radius ratio eta = R-i/R-o. Three typical radius ratios are investigatedi.e., eta = 0.5, 0.714, and 0.909, and the corresponding prefactors c = 0.0049, 0.0075, and 0.0086 are found to improve (lower) the rigorous upper bounds by Doering and Constantin [C. Doering and P. Constantin, Phys. Rev. Lett. 69, 1648 (1992)] and Constantin [P. Constantin, SIAM Rev. 36, 73 (1994)] by at least one order of magnitude. Furthermore, we show, via an inductive bifurcation analysis, that considering a three-dimensional background velocity field is unable to lower the bound.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Calculation of the mean velocity profile for strongly turbulent Taylor-Couette flow at arbitrary radius ratios
    Berghout, Pieter
    Verzicco, Roberto
    Stevens, Richard J. A. M.
    Lohse, Detlef
    Chung, Daniel
    JOURNAL OF FLUID MECHANICS, 2020, 905
  • [42] Turbulent structures in an optimal Taylor-Couette flow between concentric counter-rotating cylinders
    Jalalabadi, Razieh
    Kim, Jongmin
    Sung, Hyung Jin
    JOURNAL OF TURBULENCE, 2017, 18 (05): : 480 - 496
  • [43] Direct numerical simulation of Taylor-Couette flow: Regime-dependent role of axial walls
    Xu, Fan
    Zhao, Peng
    Sun, Chao
    He, Yurong
    Wang, Junwu
    CHEMICAL ENGINEERING SCIENCE, 2022, 263
  • [44] Controlling secondary flows in Taylor-Couette flow using stress-free boundary conditions
    Jeganathan, Vignesh
    Alba, Kamran
    Ostilla-Monico, Rodolfo
    JOURNAL OF FLUID MECHANICS, 2021, 922
  • [45] Statistics of turbulent fluctuations in counter-rotating Taylor-Couette flows
    Huisman, Sander G.
    Lohse, Detlef
    Sun, Chao
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [46] Counter-rotating Taylor-Couette flows with radial temperature gradient
    Khawar, Obaidullah
    Baig, M. F.
    Sanghi, Sanjeev
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2022, 95
  • [47] Direct numerical simulations of Taylor-Couette turbulence: the effects of sand grain roughness
    Berghout, Pieter
    Zhu, Xiaojue
    Chung, Daniel
    Verzicco, Roberto
    Stevens, Richard J. A. M.
    Lohse, Detlef
    JOURNAL OF FLUID MECHANICS, 2019, 873 : 260 - 286
  • [48] Numerical simulation of turbulent Taylor-Couette flow with high Taylor number and large radius ratio in high-speed canned motor pump internals
    Zhang, Yuhan
    Xu, Rui
    Song, Yuchen
    Wu, Dazhuan
    Wu, Peng
    PHYSICS OF FLUIDS, 2024, 36 (10)
  • [49] Turbulence modulation in liquid-liquid two-phase Taylor-Couette turbulence
    Su, Jinghong
    Wang, Cheng
    Zhang, Yi-Bao
    Xu, Fan
    Wang, Junwu
    Sun, Chao
    JOURNAL OF FLUID MECHANICS, 2024, 999
  • [50] Minimizing hydrodynamic stress in mammalian cell culture through the lobed Taylor-Couette bioreactor
    Sorg, Robin
    Tanzeglock, Timm
    Soos, Miroslav
    Morbidelli, Massimo
    Perilleux, Arnaud
    Solacroup, Thomas
    Broly, Herve
    BIOTECHNOLOGY JOURNAL, 2011, 6 (12) : 1504 - 1515