Upper bound on angular momentum transport in Taylor-Couette flow

被引:6
|
作者
Ding, Zijing [1 ]
Marensi, Elena [2 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Univ Sheffield, Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
ENERGY-DISSIPATION; VARIATIONAL BOUNDS; INCOMPRESSIBLE FLOWS; HEAT-TRANSPORT; TORQUE; CONSTANTIN;
D O I
10.1103/PhysRevE.100.063109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the upper bound on angular momentum transport in Taylor-Couette flow theoretically and numerically by a one-dimensional background field method. The flow is bounded between a rotating inner cylinder of radius R-i and a fixed outer cylinder of radius R-o. A variational problem is formulated and solved by a pseudo-time-stepping method up to a Taylor number Ta = 10(9). The angular momentum transport, characterized by a Nusselt number Nu, is bounded by Nu <= cTa(1/2), where the prefactor c depends on the radius ratio eta = R-i/R-o. Three typical radius ratios are investigatedi.e., eta = 0.5, 0.714, and 0.909, and the corresponding prefactors c = 0.0049, 0.0075, and 0.0086 are found to improve (lower) the rigorous upper bounds by Doering and Constantin [C. Doering and P. Constantin, Phys. Rev. Lett. 69, 1648 (1992)] and Constantin [P. Constantin, SIAM Rev. 36, 73 (1994)] by at least one order of magnitude. Furthermore, we show, via an inductive bifurcation analysis, that considering a three-dimensional background velocity field is unable to lower the bound.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Friction drag reduction of Taylor-Couette flow over air-filled microgrooves
    Liu, Xiaochao
    You, Chenxi
    Cao, Yanlin
    Xu, Baorui
    Yang, Yantao
    Li, Hongyuan
    Lv, Pengyu
    Sun, Chao
    Duan, Huiling
    JOURNAL OF FLUID MECHANICS, 2024, 999
  • [32] Marginally stable and turbulent boundary layers in low-curvature Taylor-Couette flow
    Brauckmann, Hannes J.
    Eckhardt, Bruno
    JOURNAL OF FLUID MECHANICS, 2017, 815 : 149 - 168
  • [33] Controlling secondary flows in Taylor-Couette flow using axially spaced superhydrophobic surfaces
    Jeganathan, Vignesh
    Shannak, Tala
    Alba, Kamran
    Ostilla-Monico, Rodolfo
    JOURNAL OF FLUID MECHANICS, 2023, 969
  • [34] Friction dynamics of elasto-inertial turbulence in Taylor-Couette flow of viscoelastic fluids
    Moazzen, Masoud
    Lacassagne, Tom
    Thomy, Vincent
    Bahrani, S. Amir
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2246):
  • [35] Elasto-inertial dissipation in particle-laden viscoelastic Taylor-Couette flow
    Carre, Charles
    Moazzen, Masoud
    Lacassagne, Tom
    Bahrani, S. Amir
    JOURNAL OF FLUID MECHANICS, 2024, 997
  • [36] Logarithmic Boundary Layers in Strong Taylor-Couette Turbulence
    Huisman, Sander G.
    Scharnowski, Sven
    Cierpka, Christian
    Kaehler, Christian J.
    Lohse, Detlef
    Sun, Chao
    PHYSICAL REVIEW LETTERS, 2013, 110 (26)
  • [37] Experimental method for investigating the formation of flow patterns in a very wide gap Taylor-Couette flow (?=0.1).
    Hamede, Mohammed Hussein
    Merbold, Sebastian
    Egbers, Christoph
    TM-TECHNISCHES MESSEN, 2023, 90 (05) : 332 - 339
  • [38] High-Reynolds Number Taylor-Couette Turbulence
    Grossmann, Siegfried
    Lohse, Detlef
    Sun, Chao
    ANNUAL REVIEW OF FLUID MECHANICS, VOL 48, 2016, 48 : 53 - 80
  • [39] Global drag reduction and local flow statistics in Taylor-Couette turbulence with dilute polymer additives
    Zhang, Yi-Bao
    Fan, Yaning
    Su, Jinghong
    Xi, Heng-Dong
    Sun, Chao
    JOURNAL OF FLUID MECHANICS, 2025, 1002
  • [40] Direct numerical simulation of the Taylor-Couette flow with the asymmetric end-wall boundary conditions
    Tuliszka-Sznitko, E.
    Kielczewski, K.
    ARCHIVES OF MECHANICS, 2016, 68 (05): : 395 - 418