Upper bound on angular momentum transport in Taylor-Couette flow

被引:6
|
作者
Ding, Zijing [1 ]
Marensi, Elena [2 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Univ Sheffield, Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
ENERGY-DISSIPATION; VARIATIONAL BOUNDS; INCOMPRESSIBLE FLOWS; HEAT-TRANSPORT; TORQUE; CONSTANTIN;
D O I
10.1103/PhysRevE.100.063109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the upper bound on angular momentum transport in Taylor-Couette flow theoretically and numerically by a one-dimensional background field method. The flow is bounded between a rotating inner cylinder of radius R-i and a fixed outer cylinder of radius R-o. A variational problem is formulated and solved by a pseudo-time-stepping method up to a Taylor number Ta = 10(9). The angular momentum transport, characterized by a Nusselt number Nu, is bounded by Nu <= cTa(1/2), where the prefactor c depends on the radius ratio eta = R-i/R-o. Three typical radius ratios are investigatedi.e., eta = 0.5, 0.714, and 0.909, and the corresponding prefactors c = 0.0049, 0.0075, and 0.0086 are found to improve (lower) the rigorous upper bounds by Doering and Constantin [C. Doering and P. Constantin, Phys. Rev. Lett. 69, 1648 (1992)] and Constantin [P. Constantin, SIAM Rev. 36, 73 (1994)] by at least one order of magnitude. Furthermore, we show, via an inductive bifurcation analysis, that considering a three-dimensional background velocity field is unable to lower the bound.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Effect of micro-grooves on drag reduction in Taylor-Couette flow
    Xu, Baorui
    Li, Hongyuan
    Liu, Xiaochao
    Xiang, Yaolei
    Lv, Pengyu
    Tan, Xiangkui
    Zhao, Yaomin
    Sun, Chao
    Duan, Huiling
    PHYSICS OF FLUIDS, 2023, 35 (04)
  • [22] Space-time VMS isogeometric analysis of the Taylor-Couette flow
    Aydinbakar, Levent
    Takizawa, Kenji
    Tezduyar, Tayfun E.
    Kuraishi, Takashi
    COMPUTATIONAL MECHANICS, 2021, 67 (05) : 1515 - 1541
  • [23] Turbulence decay towards the linearly stable regime of Taylor-Couette flow
    Ostilla-Monico, Rodolfo
    Verzicco, Roberto
    Grossmann, Siegfried
    Lohse, Detlef
    JOURNAL OF FLUID MECHANICS, 2014, 748
  • [24] The near-wall region of highly turbulent Taylor-Couette flow
    Ostilla-Monico, Rodolfo
    Verzicco, Roberto
    Grossmann, Siegfried
    Lohse, Detlef
    JOURNAL OF FLUID MECHANICS, 2016, 788 : 95 - 117
  • [25] A new hybrid turbulence model applied to highly turbulent Taylor-Couette flow
    Luo, Guohu
    Yao, Zhenqiang
    Shen, Hong
    PHYSICS OF FLUIDS, 2018, 30 (06)
  • [26] Direct numerical simulation of Taylor-Couette flow with vertical asymmetric rough walls
    Xu, Fan
    Su, Jinghong
    Lan, Bin
    Zhao, Peng
    He, Yurong
    Sun, Chao
    Wang, Junwu
    JOURNAL OF FLUID MECHANICS, 2023, 975
  • [27] Taylor-Couette flow and heat transfer in an elliptical enclosure with a rotating inner cylinder
    Unnikrishnan, Akash
    Narayanan, Vinod
    Chamorro, Leonardo P.
    Vanka, Surya Pratap
    PHYSICS OF FLUIDS, 2024, 36 (03)
  • [28] Experimental techniques for turbulent Taylor-Couette flow and Rayleigh-Benard convection
    Sun, Chao
    Zhou, Quan
    NONLINEARITY, 2014, 27 (09) : R89 - R121
  • [29] Exploring the phase space of multiple states in highly turbulent Taylor-Couette flow
    van der Veen, Roeland C. A.
    Huisman, Sander G.
    Dung, On-Yu
    Tang, Ho L.
    Sun, Chao
    Lohse, Detlef
    PHYSICAL REVIEW FLUIDS, 2016, 1 (02):
  • [30] Velocity profiles, flow structures and scalings in a wide-gap turbulent Taylor-Couette flow
    Froitzheim, A.
    Merbold, S.
    Egbers, C.
    JOURNAL OF FLUID MECHANICS, 2017, 831 : 330 - 357