The Maximum Spectral Radius of Non-Bipartite Graphs Forbidding Short Odd Cycles

被引:16
作者
Li, Yongtao [1 ]
Peng, Yuejian [1 ]
机构
[1] Hunan Univ Changsha, Sch Math, Changsha 410082, Hunan, Peoples R China
关键词
INDEPENDENCE NUMBERS; DENSE NEIGHBORHOODS; LARGEST EIGENVALUE; BOUNDS; CLIQUE;
D O I
10.37236/11236
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that eigenvalues of graphs can be used to describe structural properties and parameters of graphs. A theorem of Nosal and Nikiforov states that if G is a triangle-free graph with m edges, then lambda(G) S root m, equality holds if and only if G is a complete bipartite graph. Recently, Lin, Ning and Wu [Combin. Probab. Comput. 30 (2021)] proved a generalization for non-bipartite triangle-free graphs. Moreover, Zhai and Shu [Discrete Math. 345 (2022)] presented a further improvement. In this paper, we present an alternative method for proving the improvement by Zhai and Shu. Furthermore, the method can allow us to give a refinement on the result of Zhai and Shu for non-bipartite graphs without short odd cycles.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 47 条
[1]  
Aigner M., 2014, PROOFS BOOK, Vfifth
[2]  
[Anonymous], LET G BE GRAPH M EDG
[3]   On the spectral radius of graphs with cut vertices [J].
Berman, A ;
Zhang, XD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 83 (02) :233-240
[4]   Tales of Hoffman: Three extensions of Hoffman's bound on the graph chromatic number [J].
Bilu, Y .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (04) :608-613
[5]   DENSE NEIGHBORHOODS AND TURAN THEOREM [J].
BOLLOBAS, B ;
THOMASON, A .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1981, 31 (01) :111-114
[6]   Cliques and the spectral radius [J].
Bollobas, Bela ;
Nikiforov, Vladimir .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (05) :859-865
[7]  
Bondy J.A., 2008, GRAPH THEORY, V244, DOI DOI 10.1007/978-1-84628-970-5
[8]   LARGE DENSE NEIGHBORHOODS AND TURAN THEOREM [J].
BONDY, JA .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 34 (01) :109-111
[9]  
Chen M., 2018, J. Anhui Univ. Nat. Sci., V42, P12
[10]  
CHUNG FRK., 1989, J AM MATH SOC, V2, P187, DOI [DOI 10.2307/1990973.MR965008, DOI 10.1090/S0894-0347-1989-0965008-X]