Acute myeloid leukemia stem cells and CD33-targeted immunotherapy

被引:246
|
作者
Walter, Roland B. [1 ,2 ]
Appelbaum, Frederick R. [1 ,3 ]
Estey, Elihu H. [1 ,2 ]
Bernstein, Irwin D. [1 ,4 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Div Clin Res, Seattle, WA 98109 USA
[2] Univ Washington, Dept Med, Div Hematol, Seattle, WA 98195 USA
[3] Univ Washington, Dept Med, Div Med Oncol, Seattle, WA USA
[4] Univ Washington, Dept Pediat, Seattle, WA 98195 USA
基金
美国国家卫生研究院;
关键词
COLONY-FORMING CELLS; GEMTUZUMAB OZOGAMICIN MYLOTARG; ACUTE MYELOGENOUS LEUKEMIA; ANTIBODY-CALICHEAMICIN CONJUGATE; ACUTE PROMYELOCYTIC LEUKEMIA; BONE-MARROW; ANTI-CD33; ANTIBODY; CD33; EXPRESSION; IN-VITRO; THERAPEUTIC IMPLICATIONS;
D O I
10.1182/blood-2011-11-325050
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Although the identification of cancer stem cells as therapeutic targets is now actively being pursued in many human malignancies, the leukemic stem cells in acute myeloid leukemia (AML) are a paradigm of such a strategy. Heterogeneity of these cells was suggested by clonal analyses indicating the existence of both leukemias resulting from transformed multi-potent CD33(-) stem cells as well others arising from, or predominantly involving, committed CD33(+) myeloid precursors. The latter leukemias, which may be associated with an intrinsically better prognosis, offer a particularly attractive target for stem cell-directed therapies. Targeting the CD33 differentiation antigen with gemtuzumab ozogamicin was the first attempt of such an approach. Emerging clinical data indicate that gemtuzumab ozogamicin is efficacious not only for acute promyelocytic leukemia but, in combination with conventional chemotherapy, also for other favorable- and intermediate-risk AMLs, providing the first proof-of-principle evidence for the validity of this strategy. Herein, we review studies on the nature of stem cells in AML, discuss clinical data on the effectiveness of CD33-directed therapy, and consider the mechanistic basis for success and failure in various AML subsets. (Blood. 2012; 119(26):6198-6208)
引用
收藏
页码:6198 / 6208
页数:11
相关论文
共 50 条
  • [1] Investigational CD33-targeted therapeutics for acute myeloid leukemia
    Walter, Roland B.
    EXPERT OPINION ON INVESTIGATIONAL DRUGS, 2018, 27 (04) : 339 - 348
  • [2] Sinusoidal obstruction syndrome following CD33-targeted therapy in acute myeloid leukemia
    Godwin, Colin D.
    McDonald, George B.
    Walter, Roland B.
    BLOOD, 2017, 129 (16) : 2330 - 2332
  • [3] Development of CD33-Targeted Dual Drug-Loaded Nanoparticles for the Treatment of Pediatric Acute Myeloid Leukemia
    Carvalho, Ana M.
    Greene, Michelle K.
    Smyth, Peter
    Mutch, Alexander
    McLaughlin, Kirsty M.
    Cairns, Lauren V.
    Mills, Ken I.
    McCloskey, Karen D.
    Scott, Christopher J.
    BIOMACROMOLECULES, 2024, 25 (10) : 6503 - 6514
  • [4] In Vitro and In Vivo Efficacy of a Novel CD33-Targeted Thorium-227 Conjugate for the Treatment of Acute Myeloid Leukemia
    Hagemann, Urs B.
    Wickstroem, Katrine
    Wang, Ellen
    Shea, Adam O.
    Sponheim, Kristine
    Karlsson, Jenny
    Bjerke, Roger M.
    Ryan, Olav B.
    Cuthbertson, Alan S.
    MOLECULAR CANCER THERAPEUTICS, 2016, 15 (10) : 2422 - 2431
  • [5] CD33 Targeted gd T cells for Treatment of Acute Myeloid Leukemia
    Boucher, Justin C.
    Austin, Anna L.
    Kostenko, Elena
    Reid, Kayla
    Nagy, Mate Z.
    Davila, Marco L.
    Guevara-Patino, Jose A.
    Bejanyan, Nelli
    MOLECULAR THERAPY, 2024, 32 (04) : 633 - 634
  • [6] Optimized CD70-Targeted CAR Secreting a CD33-Targeted Bispecific T-cell Engager Overcomes Antigen Heterogeneity for Acute Myeloid Leukemia
    Leick, Mark
    Silva, Harrison
    Martin, Grace
    Kann, Michael
    Wehrli, Marc
    Choi, Bryan
    Kuo, Adam
    Larson, Rebecca
    Schmidts, Andrea
    Bailey, Stefanie
    Grauwet, Korneel
    Bouffard, Amanda
    Gallagher, Kathleen
    Elder, Eva
    Katsis, Katelin
    Grazewski, Kirsten
    Maus, Marcela
    MOLECULAR THERAPY, 2022, 30 (04) : 576 - 577
  • [7] Targeted immunotherapy for acute myeloid leukemia
    Vasu, Sumithira
    Caligiuri, Michael A.
    BEST PRACTICE & RESEARCH CLINICAL HAEMATOLOGY, 2011, 24 (04) : 533 - 540
  • [8] Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia
    Kim, Miriam Y.
    Yu, Kyung-Rok
    Kenderian, Saad S.
    Ruella, Marco
    Chen, Shirley
    Shin, Tae-Hoon
    Aljanahi, Aisha A.
    Schreeder, Daniel
    Klichinsky, Michael
    Shestova, Olga
    Kozlowski, Miroslaw S.
    Cummins, Katherine D.
    Shan, Xinhe
    Shestov, Maksim
    Bagg, Adam
    Morrissette, Jennifer J. D.
    Sekhri, Palak
    Lazzarotto, Cicera R.
    Calvo, Katherine R.
    Kuhns, Douglas B.
    Donahue, Robert E.
    Behbehani, Gregory K.
    Tsai, Shengdar Q.
    Dunbar, Cynthia E.
    Gill, Saar
    CELL, 2018, 173 (06) : 1439 - +
  • [9] Base Editor-Mediated CD33 Engineering in Hematopoietic Stem and Progenitor Cells to Improve CD33-Targeted Cancer Therapies
    Humbert, Olivier
    Llewellyn, Mallory J.
    Fields, Emily S.
    Laszlo, George
    Kleinstiver, Benjamin P.
    Walter, Roland B.
    Kiem, Hans-Peter
    MOLECULAR THERAPY, 2020, 28 (04) : 151 - 151
  • [10] CD33-Targeted Lipid Nanoparticles (aCD33LNs) for Therapeutic Delivery of GTI-2040 to Acute Myelogenous Leukemia
    Li, Hong
    Xu, Songlin
    Quan, Jishan
    Yung, Bryant C.
    Pang, Jiuxia
    Zhou, Chenguang
    Cho, Young-Ah
    Zhang, Mengzi
    Liu, Shujun
    Muthusamy, Natarajan
    Chan, Kenneth K.
    Byrd, John C.
    Lee, L. James
    Marcucci, Guido
    Lee, Robert J.
    MOLECULAR PHARMACEUTICS, 2015, 12 (06) : 2010 - 2018