Mean-field FBSDE and optimal control

被引:2
作者
Agram, Nacira [1 ]
Choutri, Salah Eddine [2 ,3 ]
机构
[1] Linnaeus Univ LNU, Dept Math, Vaxjo, Sweden
[2] New York Univ Abu Dhabi, Learning & Game Theory Lab L&G Lab, Abu Dhabi, U Arab Emirates
[3] New York Univ Abu Dhabi, Ctr Stabil Instabil & Turbulence SITE, Abu Dhabi, U Arab Emirates
关键词
Mean-field forward-backward SDE; risk minimization; stochastic maximum principle;
D O I
10.1080/07362994.2020.1794893
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study optimal control for mean-field forward-backward stochastic differential equations with payoff functionals of mean-field type. Sufficient and necessary optimality conditions in terms of a stochastic maximum principle are derived. As an illustration, we solve an optimal portfolio with mean-field risk minimization problem.
引用
收藏
页码:235 / 251
页数:17
相关论文
共 14 条
[1]   Model uncertainty stochastic mean-field control [J].
Agram, Nacira ;
Oksendal, Bernt .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (01) :36-56
[2]   SINGULAR CONTROL OPTIMAL STOPPING OF MEMORY MEAN-FIELD PROCESSES [J].
Agram, Nacira ;
Bachouch, Achref ;
Oksendal, Bernt ;
Proske, Frank .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (01) :450-468
[3]   Stochastic Control of Memory Mean-Field Processes [J].
Agram, Nacira ;
Oksendal, Bernt .
APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 79 (01) :181-204
[4]  
[Anonymous], 2019, ARXIV190406193
[5]   Well-posedness of mean-field type forward-backward stochastic differential equations [J].
Bensoussan, A. ;
Yam, S. C. P. ;
Zhang, Z. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (09) :3327-3354
[6]   FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND CONTROLLED MCKEAN-VLASOV DYNAMICS [J].
Carmona, Rene ;
Delarue, Francois .
ANNALS OF PROBABILITY, 2015, 43 (05) :2647-2700
[7]   Backward Mean-Field Linear-Quadratic-Gaussian (LQG) Games: Full and Partial Information [J].
Huang, Jianhui ;
Wang, Shujun ;
Wu, Zhen .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (12) :3784-3796
[8]   LARGE-POPULATION LQG GAMES INVOLVING A MAJOR PLAYER: THE NASH CERTAINTY EQUIVALENCE PRINCIPLE [J].
Huang, Minyi .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (05) :3318-3353
[9]   Mean field games [J].
Lasry, Jean-Michel ;
Lions, Pierre-Louis .
JAPANESE JOURNAL OF MATHEMATICS, 2007, 2 (01) :229-260
[10]  
Lions P.-L., 2014, Cours au College de France: Theorie des jeux a champs moyen