Plasma transport across magnetic field lines in low-temperature plasma sources

被引:59
作者
Hagelaar, G. J. M. [1 ,2 ,3 ,4 ,5 ]
Oudini, N. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Toulouse, F-31062 Toulouse, France
[2] INPT, UPS, F-31062 Toulouse, France
[3] LAPLACE Lab Plasma & Convers Energie, F-31062 Toulouse, France
[4] CNRS, F-31062 Toulouse, France
[5] LAPLACE, F-31062 Toulouse, France
关键词
NEGATIVE-ION SOURCES; NUMERICAL-ANALYSIS; DISCHARGE; DIFFUSION; MODEL;
D O I
10.1088/0741-3335/53/12/124032
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Plasma transport across magnetic field lines plays a key role not only in hot fusion plasmas but also in low-temperature plasma sources operating at low pressure, which often rely on external magnetic fields for their operation. Transport in these sources involves different physics than that in fusion plasmas: the ions are not (completely) magnetized, the plasma is sensitive to wall effects because the magnetic field lines intercept the chamber walls, and the neutral gas density is often much larger than the plasma density. This paper gives an overview of the main principles of magnetized low-temperature plasma transport as they are currently understood, including recent insights on the role of magnetic drift. Three important forms of magnetized low-temperature plasma transport are discussed: magnetized plasma diffusion, transport in E x B fields and magnetic drift. These phenomena are illustrated with recent numerical modeling results on a dipolar microwave source, an End-Hall ion source, and simplified version of the ITER negative ion source. For the latter source it is shown that obstructed magnetic drift can lead to plasma asymmetry and increased cross-field transport.
引用
收藏
页数:12
相关论文
共 35 条
[1]   Physics, simulation and diagnostics of Hall effect thrusters [J].
Adam, J. C. ;
Boeuf, J. P. ;
Dubuit, N. ;
Dudeck, M. ;
Garrigues, L. ;
Gresillon, D. ;
Heron, A. ;
Hagelaar, G. J. M. ;
Kulaev, V. ;
Lemoine, N. ;
Mazouffre, S. ;
Luna, J. Perez ;
Pisarev, V. ;
Tsikata, S. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (12)
[2]   Study of stationary plasma thrusters using two-dimensional fully kinetic simulations [J].
Adam, JC ;
Héron, A ;
Laval, G .
PHYSICS OF PLASMAS, 2004, 11 (01) :295-305
[3]   Parametric analysis of a magnetized cylindrical plasma [J].
Ahedo, Eduardo .
PHYSICS OF PLASMAS, 2009, 16 (11) :113503
[4]   The plasma boundary in a magnetic field [J].
Allen, J. E. .
CONTRIBUTIONS TO PLASMA PHYSICS, 2008, 48 (5-7) :400-405
[5]  
[Anonymous], 2005, PRINCIPLES PLASMA DI, DOI [10.1002/0471724254, DOI 10.1002/0471724254]
[6]  
[Anonymous], 1984, INTRO PLASMA PHYS CO
[7]   Model of an inductively coupled negative ion source: II. Application to an ITER type source [J].
Boeuf, J. P. ;
Hagelaar, G. J. M. ;
Sarrailh, P. ;
Fubiani, G. ;
Kohen, N. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2011, 20 (01)
[8]  
Bohm D., 1949, CHARACTERISTICS ELEC, P346
[9]   Study of the plasma pre-sheath in magnetron discharges dominated by Bohm diffusion of electrons [J].
Bradley, JW .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 1998, 7 (04) :572-580
[10]   Low pressure and high power rf sources for negative hydrogen ions for fusion applications (ITER neutral beam injection) [J].
Fantz, U. ;
Franzen, P. ;
Kraus, W. ;
Falter, H. D. ;
Berger, M. ;
Christ-Koch, S. ;
Froeschle, M. ;
Gutser, R. ;
Heinernann, B. ;
Martens, C. ;
McNeely, P. ;
Riedl, R. ;
Speth, E. ;
Wunderlich, D. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (02)