Neutron diffusion coefficient for disordered arrays of TRISO particles in spherical nuclear fuel

被引:2
作者
Aguilar-Madera, C. G. [1 ]
Herrera-Hernandez, E. C. [2 ]
Espinosa-Paredes, G. [3 ]
机构
[1] Univ Autonoma Nuevo Leon, Fac Ciencias Tierra, Linares Nl 67700, Mexico
[2] CONACYT, Ctr Ingn & Desarrollo Ind, Ciudad del Carmen 24150, Campeche, Mexico
[3] Univ Autonoma Metropolitana Iztapalapa, Area Ingn Recursos Energet, Cd Mexico 09340, Mexico
关键词
PBMR; TRISO particles; Up-scaled method; Closure Problem; Neutron diffusion coefficients; Stochastic process; Ensemble realizations; MASS-TRANSFER; TRANSPORT;
D O I
10.1016/j.anucene.2020.107635
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The aim of this paper is the analysis of the neutron diffusion coefficient with 3D approximation of the up-scaled neutron diffusion equation. In this work we present comparisons of 3D ordered and disordered approximations. To this end, we compute the effective diffusion and interfacial neutronic flux coefficients in representative cells of fuel elements composed by several TRISO particles randomly collocated. The ensemble of 700 realizations, show more variations in the numerical estimation of the interfacial neutronic flux coefficient than for the effective diffusion coefficient. The assumption of one ordered arrangement of TRISO particles inside the fuel particle is enough for estimation of the diffusion coefficient. A comparison of the upscaled model with effective coefficients computed from disordered arrangements, with analytical solutions for unidirectional neutron diffusion demonstrates that the classical diffusion theory and the Boltzmann equation would yield similar predictions for long times and highly or poorly absorbent materials. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 19 条
[1]   Time-dependent neutron diffusion coefficient for the effective diffusion equation [J].
Aguilar-Madera, Carlos G. ;
Espinosa-Paredes, Gilberto ;
Molina-Espinosa, Lazar .
PROGRESS IN NUCLEAR ENERGY, 2019, 112 :20-33
[2]   Modeling the transport of drugs eluted from stents: physical phenomena driving drug distribution in the arterial wall [J].
Bozsak, Franz ;
Chomaz, Jean-Marc ;
Barakat, Abdul I. .
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2014, 13 (02) :327-347
[3]   The VHTR and GFR and their use in innovative symbiotic fuel cycles [J].
Chersola, Davide ;
Lomonaco, Guglielmo ;
Marotta, Riccardo .
PROGRESS IN NUCLEAR ENERGY, 2015, 83 :443-459
[4]   MODELING TRANSPORT IN POROUS MEDIA BY CONTROL VOLUME ANALYSIS [J].
Civan, Faruk .
JOURNAL OF POROUS MEDIA, 2010, 13 (10) :855-873
[5]   Mixing and Reaction Kinetics in Porous Media: An Experimental Pore Scale Quantification [J].
de Anna, Pietro ;
Jimenez-Martinez, Joaquin ;
Tabuteau, Herve ;
Turuban, Regis ;
Le Borgne, Tanguy ;
Derrien, Morgane ;
Meheust, Yves .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (01) :508-516
[6]  
Duderstadt J.J., 1976, Nuclear reactor analysis
[7]   Analysis of the interfacial heat transfer process in a pebble fuel [J].
Espinosa-Paredes, G. ;
Castillo-Jimenez, V. ;
Herranz-Puebla, L. E. ;
Vazquez-Rodriguez, R. .
PROGRESS IN NUCLEAR ENERGY, 2013, 65 :15-31
[8]   Scaled neutron point kinetics (SUNPK) equations for nuclear reactor dynamics: 2D approximation [J].
Espinosa-Paredes, Gilberto ;
Aguilar-Madera, Carlos G. .
ANNALS OF NUCLEAR ENERGY, 2018, 115 :377-386
[9]   Tortuosity in Porous Media: A Critical Review [J].
Ghanbarian, Behzad ;
Hunt, Allen G. ;
Ewing, Robert P. ;
Sahimi, Muhammad .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2013, 77 (05) :1461-1477
[10]  
Golfier F, 2002, J POROUS MEDIA, V5, P169, DOI 10.1615/JPorMedia.v5.i3.10